
The VLDB Journal (2004) 13: 370–383 / Digital Object Identifier (DOI) 10.1007/s00778-004-0133-5

Retrospective on Aurora

Hari Balakrishnan3, Magdalena Balazinska3, Don Carney2, Uğur Çetintemel2, Mitch Cherniack1, Christian Convey2,
Eddie Galvez1, Jon Salz3, Michael Stonebraker3, Nesime Tatbul2, Richard Tibbetts3, Stan Zdonik2

1 Department of Computer Science, Brandeis University, Waltham, MA 02454, USA (e-mail: {mfc, eddie}@cs.brandeis.edu)
2 Department of Computer Science, Brown University, Providence, RI 02912, USA (e-mail: {dpc, ugur, cjc, tatbul, sbz}@cs.brown.edu)
3 Department of EECS and Laboratory of Computer Science, Massachussetts Institute of Technology, Cambridge, MA 02139, USA

(e-mail: {hari, mbalazin, jsalz, stonebraker, tibbetts}@lcs.mit.edu)

Edited by J. Gehrke and J. Hellerstein. Received: October 21, 2003 / Accepted: April 16, 2004
Published online: September 14, 2004 – c© Springer-Verlag 2004

Abstract. This experience paper summarizes the key lessons
we learned throughout the design and implementation of the
Aurora stream-processing engine. For the past 2 years, we have
built five stream-based applications using Aurora. We first de-
scribe in detail these applications and their implementation in
Aurora. We then reflect on the design of Aurora based on this
experience. Finally, we discuss our initial ideas on a follow-on
project, called Borealis, whose goal is to eliminate the limita-
tions of Aurora as well as to address new key challenges and
applications in the stream-processing domain.

Keywords: Data stream management – Stream-processing
engines – Monitoring applications – Distributed stream pro-
cessing – Quality-of-service

1 Introduction and history

Over the last several years, a great deal of progress has been
made in the area of stream-processing engines (SPEs) [7,9,
15]. Three basic tenets distinguish SPEs from current data-
processing engines. First, they must support primitives for
streaming applications. Unlike OLTP, which processes mes-
sages in isolation, streaming applications entail time series
operations on streams of messages. Although a time series
“blade” was added to the Illustra Object-Relational DBMS,
generally speaking, time series operations are not well sup-
ported by current DBMSs. Second, streaming applications en-
tail a real-time component. If one is content to see an answer
later, then one can store incoming messages in a data ware-
house and run a historical query on the warehouse to find in-
formation of interest. This tactic does not work if the answer
must be constructed in real time. Real time also dictates a
fundamentally different storage architecture. DBMSs univer-
sally store and index data records before making them avail-
able for query activity. Such outbound processing, where data
are stored before being processed, cannot deliver real-time la-
tency, as required by SPEs. To meet more stringent latency
requirements, SPEs must adopt an alternate model, inbound
processing, where query processing is performed directly on

incoming messages before (or instead of) storing them. Lastly,
an SPE must have capabilities to gracefully deal with spikes in
message load. Fundamentally, incoming traffic is bursty, and
it is desirable to selectively degrade the performance of the
applications running on an SPE.

The Aurora stream-processing engine, motivated by these
three tenets, is currently operational. It consists of some 100K
lines of C++ and Java and runs on both Unix- and Linux-based
platforms. It was constructed with the cooperation of students
and faculty at Brown, Brandeis, and MIT. The fundamental
design of the engine has been well documented elsewhere: the
architecture of the engine is described in [7], while the schedul-
ing algorithms are presented in [8]. Load-shedding algorithms
are presented in [18], and our approach to high availability in a
multisite Aurora installation is covered in [10,13]. Lastly, we
have been involved in a collective effort to define a benchmark
that described the sort of monitoring applications that we have
in mind. The result of this effort is called Linear Road and is
described in [4].

Recently, we have used Aurora to build five different ap-
plication systems. Throughout the process, we have learned a
great deal about the key requirements of streaming applica-
tions. In this paper, we reflect on the design of Aurora based
on this experience.

The first application is an Aurora implementation of Lin-
ear Road, mentioned above. In addition to Linear Road, we
have implemented a pilot application that detects late arrival of
messages in a financial-services feed-processing environment.
Furthermore, one of our collaborators, a military medical re-
search laboratory [20], asked us to build a system to monitor
the levels of hazardous materials in fish. We have also worked
with a major defense contractor on a pilot application that deals
with battlefield monitoring in a hostile environment. Lastly,
we have used Aurora to build Medusa, a distributed version
of Aurora that is intended to be used by multiple enterprises
that operate in different administrative domains. Medusa uses
an innovative agoric model to deal with cross-system resource
allocation and is described in more detail in [5].

We start with a short review of theAurora design in Sect. 2.
Following this, we discuss the five case studies mentioned
above in detail in Sect. 3 so the reader can understand the con-

H. Balakrishnan et al.: Retrospective on Aurora 371

Fig. 1. Aurora graphical user interface

text for the retrospection that follows. In Sect. 4, we present the
lessons we have learned on the design of SPEs. These include
the necessity of supporting stored tables, the requirement of
synchronization primitives to main consistency of stored data
in a streaming environment, the need for supporting primi-
tives for late-arriving or missing messages, the requirement
for a myriad of adaptors for other feed formats, and the need
for globally accessible catalogs and a programming notation
to specify Aurora networks (in addition to the “boxes and ar-
rows” GUI). Since stream-processing applications are usually
time critical, we also discuss the importance of lightweight
scheduling and quantify the performance of the current Au-
rora prototype using a microbenchmark on basic stream oper-
ators. Aurora performance on the Linear Road benchmark is
documented elsewhere [4].

The current Aurora prototype is being transferred to the
commercial domain, with venture capital backing. As such,
the academic project is hard at work on a complete redesign
of Aurora, which we call Borealis. The intent of Borealis is
to overcome some of the shortcomings of Aurora as well as
make a major leap forward in several areas. Hence, in Sect. 5,
we discuss the ideas we have for Borealis in several new ar-
eas including mechanisms for dynamic modification of query
specification and query results and a distributed optimization
framework that operates across server and sensor networks.

2 Aurora architecture

Aurora is based on a dataflow-style “boxes and arrows” para-
digm. Unlike other stream-processing systems that use SQL-
style declarative query interfaces (e.g., STREAM [15]), this
approach was chosen because it allows query activity to be
interspersed with message processing (e.g., cleaning, corre-
lation, etc.). Systems that only perform the query piece must
ping-pong back and forth to an application for the rest of the
work, thereby adding to system overhead and latency. An Au-

rora network can be spread across any number of machines to
achieve high scalability and availability characteristics.

In Aurora, a developer uses the GUI to wire together a net-
work of boxes and arcs that will process streams in a manner
that produces the outputs necessary for his or her application.
A screen shot of the GUI used to create Aurora networks is
shown in Fig. 1. The black boxes indicate input and output
streams that connect Aurora with the stream sources and ap-
plications, respectively. The other boxes are Aurora operators,
and the arcs represent dataflow among the operators. Users can
drag and drop operators from the palette on the left and con-
nect them by simply drawing arrows between them. It should
be noted that a developer can name a collection of boxes and
replace it with a “superbox”. This “macrodefinition” mecha-
nism drastically eases the development of big networks.

TheAurora operators are presented in detail in [3] and sum-
marized in Fig. 2. Aurora’s operator choices were influenced
by numerous systems. The basic operators Filter, Map, and
Union are modeled after the Select, Project, and Union oper-
ations of the relational algebra. Join’s use of a distance metric
to relate joinable elements on opposing streams is reminiscent
of the relational band join [12]. Aggregate’s sliding-window
semantics is a generalized version of the sliding-window con-
structs of SEQ [17] and SQL-99 (with generalizations includ-
ing allowance for disorder (SLACK), timeouts, value-based
windows, etc.). The ASSUME ORDER clause (used in Aggre-
gate and Join), which defines a result in terms of an order that
may or may not be manifested, is borrowed from AQuery [14].

Each input must obey a particular schema (a fixed number
of fixed- or variable-length fields of the standard data types).
Every output is similarly constrained. An Aurora network ac-
cepts inputs, performs message filtering, computation, aggre-
gation, and correlation, and then delivers output messages to
applications. Moreover, every output is optionally tagged with
a Quality-of-Service (QoS) specification. This specification
indicates how much latency the connected application can tol-
erate as well as what to do if adequate responsiveness cannot

372 H. Balakrishnan et al.: Retrospective on Aurora

Fig. 2. Aurora operators

be assured under overload situations. Note that the Aurora
notion of QoS is different from the traditional QoS notion
that typically implies hard performance guarantees, resource
reservations, and strict admission control.

On various arcs in an Aurora network, the developer can
note that Aurora should remember historical messages. The
amount of history to be kept by such “connection points” can
be specified by a time range or a message count. The his-
torical storage is achieved by extending the basic message-
queue management mechanism. New boxes can be added to
an Aurora network at connection points at any time. History
is replayed through the added boxes, and then conventional
Aurora processing continues. This processing continues until
the extra boxes are deleted.

TheAurora optimizer can rearrange a network by perform-
ing box swapping when it thinks the result will be favorable.
Such box swapping cannot occur across a connection point;
hence connection points are arcs that restrict the behavior of
the optimizer as well as remember history.

When a developer is satisfied with an Aurora network,
he or she can compile it into an intermediate form, which is
stored in an embedded database.At run time this data structure
is read into virtual memory and drives a real-time scheduler.
The scheduler makes decisions based on the form of the net-
work, the QoS specifications present, and the length of the
various queues. When queues overflow the buffer pool in vir-
tual memory, they are spooled to the embedded database. More
detailed information on these various topics can be obtained
from the referenced papers [3,7,8,18].

3 Aurora case studies

In this section, we present five case studies of applications
built using the Aurora engine and tools.

3.1 Financial services application

Financial service organizations purchase stock ticker feeds
from multiple providers and need to switch in real time be-
tween these feeds if they experience too many problems. We
worked with a major financial services company on developing
an Aurora application that detects feed problems and triggers
the switch in real time. In this section, we summarize the ap-
plication (as specified by the financial services company) and
its implementation in Aurora.

An unexpected delay in the reporting of new prices is an
example of a feed problem. Each security has an expected
reporting interval, and the application needs to raise an alarm if
a reporting interval exceeds its expected value. Furthermore, if
more than some number of alarms are recorded, a more serious
alarm is raised that could indicate that it is time to switch feeds.
The delay can be caused by the underlying exchange (e.g.,
NYSE, NASDAQ) or by the feed provider (e.g., Comstock,
Reuters). If it is the former, switching to another provider will
not help, so the application must be able to rapidly distinguish
between these two cases.

Ticker information is provided as a real-time data feed
from one or more providers, and a feed typically reports more
than one exchange. As an example, let us assume that there
are 500 securities within a feed that update at least once every
5 s and they are called “fast updates”. Let us also assume that
there are 4000 securities that update at least once every 60 s
and they are called “slow updates”.

If a ticker update is not seen within its update interval, the
monitoring system should raise a low alarm. For example, if
MSFT is expected to update within 5 s, and 5 s or more elapse
since the last update, a low alarm is raised.

Since the source of the problem could be in the feed or the
exchange, the monitoring application must count the number
of low alarms found in each exchange and the number of low
alarms found in each feed. If the number for each of these
categories exceeds a threshold (100 in the following example),
a high alarm is raised. The particular high alarm will indicate
what action should be taken. When a high alarm is raised, the
low alarm count is reset and the counting of low alarms begins

H. Balakrishnan et al.: Retrospective on Aurora 373

Fig. 3. Aurora query network for the alarm correlation application

again. In this way, the system produces a high alarm for every
100 low alarms of a particular type.

Furthermore, the posting of a high alarm is a serious con-
dition, and low alarms are suppressed when the threshold is
reached to avoid distracting the operator with a large number
of low alarms.

Figure 3 presents our solution realized with an Aurora
query network. We assume for simplicity that the securities
within each feed are already separated into the 500 fast up-
dating tickers and the 4000 slowly updating tickers. If this is
not the case, then the separation can be easily achieved with
a lookup. The query network in Fig. 3 actually represents six
different queries (one for each output). Notice that much of
the processing is shared.

The core of this application is in the detection of late tick-
ers. Boxes 1, 2, 3, and 4 are all Aggregate boxes that perform
the bulk of this computation. An Aggregate box groups input
tuples by common value of one or more of their attributes,
thus effectively creating a substream for each possible com-
bination of these attribute values. In this case, the aggregates
are grouping the input on common value of ticker symbol. For
each grouping or substream, a window is defined that demar-
cates interesting runs of consecutive tuples called windows.
For each of the tuples in one of these windows, some mem-
ory is allocated and an aggregating function (e.g., Average) is
applied. In this example, the window is defined to be every
consecutive pair (e.g., tuples 1 and 2, tuples 2 and 3, etc.) and
the aggregating function generates one output tuple per win-
dow with a boolean flag called Alarm, which is a 1 when the

second tuple in the pair is delayed (call this an Alarm tuple)
and a 0 when it is on time.

Aurora’s operators have been designed to react to imper-
fections such as delayed tuples. Thus, the triggering of an
Alarm tuple is accomplished directly using this built-in mech-
anism. The window defined on each pair of tuples will timeout
if the second tuple does not arrive within the given threshold
(5 s in this case). In other words, the operator will produce one
alarm each time a new tuple fails to arrive within 5 s, as the
corresponding window will automatically timeout and close.
The high-level specification of Aggregate boxes 1 through 4
is:

Aggregate(Group by ticker,
Order on arrival,
Window (Size = 2 tuples,

Step = 1 tuple,
Timeout = 5 sec))

Boxes 5 through 8 are Filters that eliminate the normal
outputs, thereby letting only the Alarm tuples through. Box 9
is a Union operator that merges all Reuters alarms onto a single
stream. Box 10 performs the same operation for Comstock.

The rest of the network determines when a large number of
Alarms is occurring and what the cause of the problem might
be.

Boxes 11 and 15 count Reuters alarms and raise a high
alarm when a threshold (100) is reached. Until that time, they
simply pass through the normal (low) alarms. Boxes 14 and 18
do the same for Comstock. Note that the boxes labeled Count

374 H. Balakrishnan et al.: Retrospective on Aurora

100 are actually Map boxes. Map takes a user-defined function
as a parameter and applies it to each input tuple. That is, for
each tuple t in the input stream, a Map box parameterized by a
function f produces the tuple f(x). In this example, Count 100
simply applies the following user-supplied function (written
in pseudocode) to each tuple that passes through:

F (x:tuple) = cnt++
if (cnt % 100 != 0)

if !suppress
emit lo-alarm

else
emit drop-alarm

else
emit hi-alarm
set suppress = true

Boxes 12, 13, 16, and 17 separate the alarms from both
Reuters and Comstock into alarms from NYSE and alarms
from NASDAQ. This is achieved by using Filters to take NYSE
alarms from both feed sources (Boxes 12 and 13) and merging
them using a Union (Box 16). A similar path exists for NAS-
DAQ alarms. The results of each of these streams are counted
and filtered as explained above.

In summary, this example illustrates the ability to share
computation among queries, the ability to extend functionality
through user-defined Aggregate and Map functions, and the
need to detect and exploit stream imperfections.

3.2 The Linear Road benchmark

Linear Road is a benchmark for stream-processing engines [2,
4]. This benchmark simulates an urban highway system that
uses “variable tolling” (also known as “congestion pricing”)
[11,1,16], where tolls are determined according to such dy-
namic factors as congestion, accident proximity, and travel
frequency. As a benchmark, Linear Road specifies input data
schemas and workloads, a suite of continuous and historical
queries that must be supported, and performance (query and
transaction response time) requirements.

Variable tolling is becoming increasingly prevalent in ur-
ban settings because it is effective at reducing traffic conges-
tion and because recent advances in microsensor technology
make it feasible. Traffic congestion in major metropolitan ar-
eas is an increasing problem as expressways cannot be built
fast enough to keep traffic flowing freely at peak periods. The
idea behind variable tolling is to issue tolls that vary according
to time-dependent factors such as congestion levels and acci-
dent proximity with the motivation of charging higher tolls
during peak traffic periods to discourage vehicles from using
the roads and contributing to the congestion. Illinois, Califor-
nia, and Finland are among the highway systems that have
pilot programs utilizing this concept.

The benchmark itself assumes a fictional metropolitan area
(called “Linear City”) that consists of 10 expressways of 100-
mile-long segments each and 1,000,000 vehicles that report
their positions via GPS-based sensors every 30 s. Tolls must be
issued on a per-segment basis automatically, based on statistics
gathered over the previous 5 min concerning average speed and
number of reporting cars. A segment’s tolls are overridden
when accidents are detected in the vicinity (an accident is

detected when multiple cars report close positions at the same
time), and vehicles that use a particular expressway often are
issued “frequent traveler” discounts.

The Linear Road benchmark demands support for five
queries: two continuous and three historical. The first con-
tinuous query calculates and reports a segment toll every time
a vehicle enters a segment. This toll must then be charged
to the vehicle’s account when the vehicle exits that segment
without exiting the expressway. Again, tolls are based on cur-
rent congestion conditions on the segment, recent accidents in
the vicinity, and frequency of use of the expressway for the
given vehicle. The second continuous query involves detecting
and reporting accidents and adjusting tolls accordingly. The
historical queries involve requesting an account balance or a
day’s total expenditure for a given vehicle on a given express-
way and a prediction of travel time between two segments on
the basis of average speeds on the segments recorded previ-
ously. Each of the queries must be answered with a specified
accuracy and within a specified response time. The degree of
success for this benchmark is measured in terms of the num-
ber of expressways the system can support, assuming 1000
position reports issued per second per expressway, while an-
swering each of the five queries within the specified latency
bounds.

An early Aurora implementation of this benchmark sup-
porting one expressway was demonstrated at SIGMOD 2003
[2].

3.3 Battalion monitoring

We have worked closely with a major defense contractor on a
battlefield monitoring application. In this application, an ad-
vanced aircraft gathers reconnaissance data and sends them to
monitoring stations on the ground. These data include posi-
tions and images of friendly and enemy units. At some point,
the enemy units cross a given demarcation line and move to-
ward the friendly units, thereby signaling an attack.

Commanders in the ground stations monitor these data for
analysis and tactical decision making. Each ground station is
interested in particular subsets of the data, each with differing
priorities. In the real application, the limiting resource is the
bandwidth between the aircraft and the ground.When an attack
is initiated, the priorities for the data classes change. More data
become critical, and the bandwidth likely saturates. In this
case, selective dropping of data is allowed in order to service
the more important classes.

For our purposes, we built a simplified version of this
application to test our load-shedding techniques. Instead of
modeling bandwidth, we assume that the limited resource is
the CPU. We introduce load shedding as a way to save cycles.

Aurora supports two kinds of load shedding. The first tech-
nique inserts random drop boxes into the network. These boxes
discard a fraction of their input tuples chosen randomly. The
second technique inserts semantic, predicate-based drop filters
into the network. Based on QoS functions, system statistics
(like operator cost and selectivity), and input rates, our algo-
rithms choose the best drop locations and the drop amount as
indicated by a drop rate (random drop) or a predicate (seman-
tic drop). Drop insertion plans are constructed and stored in a
table in advance. As load levels change, drops are automati-

H. Balakrishnan et al.: Retrospective on Aurora 375

Fig. 4. Aurora query network for battlefield monitoring application

Fig. 5. Comparison of various load-shedding approaches (%excess
load vs. % value utility loss)

cally inserted and removed from the query networks based on
these plans [18].

One of the query networks that we used in this study is
shown in Fig. 4. There are four queries in this network. The
Analysis query merges all tuples about positions of all units
for analysis and archiving. The next two queries, labeled En-
emy Tanks and Enemy Aircraft, select enemy tank and enemy
aircraft tuples using predicates on their IDs. The last query,
Across The Line, selects all the objects that have crossed the
demarcation line toward the friendly side.

Each query has a value-based QoS function attached to
its output. A value-based QoS function maps the tuple values
observed at an output to utility values that express the impor-
tance of a given result tuple. In this example, the functions
are defined on the x-coordinate attribute of the output tuple,
which indicates where an object is positioned horizontally.
The functions take values in the range [0, 500], of which 350
corresponds to the position of the vertical demarcation line.
Initially all friendly units are on the [0, 350] side of this line
whereas enemy units are on the [350, 500] side. The QoS func-
tions are specified by an application administrator and reflect
the basic fact that tuples for enemy objects that have crossed
the demarcation line are more important than others.

We ran this query network with tuples generated by theAu-
rora workload generator based on a battle scenario that we got
from the defense contractor. We fed the input tuples at differ-
ent rates to create specific levels of overload in the network;
then we let the load-shedding algorithm remove the excess
load by inserting drops to the network. Figure 5 shows the
result. We compare the performance of three different load-
shedding algorithms in terms of their value utility loss (i.e.,
average degradation in the QoS provided by the system) across
all outputs at increasing levels of load.

We make the following important observations. First, our
semantic load-shedding algorithm, which drops tuples based
on attribute values, achieves the least value utility loss at all
load levels. Second, our random load-shedding algorithm in-
serts drops of the same amounts at the same network locations
as the semantic load shedder. Since tuples are dropped ran-
domly, however, loss in value utility is higher compared to the
semantic load shedder. As excess load increases, the perfor-
mance of the two algorithms becomes similar. The reason is
that at high load levels, our semantic load shedder also drops
tuples from the high utility value ranges. Lastly, we compare
both of our algorithms against a simple admission control al-
gorithm, which sheds random tuples at the network inputs.
Both our algorithms achieve lower utility loss compared to
this algorithm. Our load-shedding algorithms may sometimes
decide to insert drops on inner arcs of the query network. On
networks with box sharing among queries (e.g., the union box
is shared among all four queries, Fig. 4), inner arcs may be
preferable to avoid utility loss at multiple query outputs. On
the other hand, at very high load levels, since drops at inner
arcs become insufficient to save the needed CPU cycles, our al-
gorithms also insert drops close to the network inputs. Hence,
all algorithms tend to converge to the same utility loss levels
at very high loads.

3.4 Environmental monitoring

We have also worked with a military medical research labora-
tory on an application that involves monitoring toxins in the
water. This application is fed streams of data indicating fish
behavior (e.g., breathing rate) and water quality (e.g., tem-
perature, pH, oxygenation, and conductivity). When the fish
behave abnormally, an alarm is sounded.

Input data streams were supplied by the army laboratory
as a text file. The single data file interleaved fish observations
with water quality observations. The alarm message emitted
by Aurora contains fields describing the fish behavior and two
different water quality reports: the water quality at the time
the alarm occurred and the water quality from the last time
the fish behaved normally. The water quality reports contain
not only the simple measurements but also the 1-/2-/4-hour
sliding-window deltas for those values.

The application’s Aurora processing network is shown in
Fig. 6 (snapshot taken from the Aurora GUI): The input port
(1) shows where tuples enter Aurora from the outside data
source. In this case, it is the application’s C++ program that
reads in the sensor log file. A Union box (2) serves merely
to split the stream into two identical streams. A Map box (3)
eliminates all tuple fields except those related to water quality.
Each superbox (4) calculates the sliding-window statistics for

376 H. Balakrishnan et al.: Retrospective on Aurora

1
3

2

4
5

6

7

Fig. 6. Aurora query network for the environmental contamination detection applications (GUI snapshot)

one of the water quality attributes. The parallel paths (5) form a
binary join network that brings the results of (4)’s subnetworks
back into a single stream. The top branch in (6) has all the
tuples where the fish act oddly, and the bottom branch has
the tuples where the fish act normally. For each of the tuples
sent into (1) describing abnormal fish behavior, (6) emits an
alarm message tuple. This output tuple has the sliding-window
water quality statistics for both the moment the fish acted oddly
and for the most recent previous moment that the fish acted
normally. Finally, the output port (7) shows where result tuples
are made available to the C++-based monitoring application.
Overall, the entire application ended up consisting of 3400
lines of C++ code (primarily for file parsing and a simple
monitoring GUI) and a 53-operator Aurora query network.

During the development of the application, we observed
that Aurora’s stream model proved very convenient for de-
scribing the required sliding-window calculations. For exam-
ple, a single instance of the aggregate operator computed the
4-h sliding-window deltas of water temperature.

Aurora’s GUI for designing query networks also proved
invaluable. As the query network grew large in the number
of operators used, there was great potential for overwhelming
complexity. The ability to manually place the operators and
arcs on a workspace, however, permitted a visual represen-
tation of “subroutine” boundaries that let us comprehend the
entire query network as we refined it.

We found that small changes in the operator language de-
sign would have greatly reduced our processing network com-
plexity. For example, Aggregate boxes apply some window
function [such as DELTA(water-pH)] to the tuples in a
sliding window. Had an Aggregate box been capable of evalu-
ating multiple functions at the same time on a single window
[such as DELTA(water-pH) and DELTA(watertemp)],
we could have used significantly fewer boxes. Many of these
changes have since been made to Aurora’s operator language.

The ease with which the processing flow could be exper-
imentally reconfigured during development, while remaining
comprehensible, was surprising. It appears that this was only
possible by having both a well-suited operator set and a GUI
tool that let us visualize the processing. It seems likely that
this application was developed at least as quickly in Aurora as
it would have been with standard procedural programming.

We note that, for this particular application, real-time re-
sponse was not required. The main value Aurora added in this
case was the ease of developing stream-oriented applications.

3.5 Medusa: distributed stream processing

Medusa is a distributed stream-processing system built using
Aurora as the single-site query-processing engine. Medusa
takes Aurora queries and distributes them across multiple
nodes. These nodes can all be under the control of one en-
tity or be organized as a loosely coupled federation under the
control of different autonomous participants.

A distributed stream-processing system such as Medusa
offers several benefits:

1. It allows stream processing to be incrementally scaled over
multiple nodes.

2. It enables high availability because the processing nodes
can monitor and take over for each other when failures
occur.

3. It allows the composition of stream feeds from different
participants to produce end-to-end services and to take
advantage of the distribution inherent in many stream-
processing applications (e.g., climate monitoring, finan-
cial analysis, etc.).

4. It allows participants to cope with load spikes without indi-
vidually having to maintain and administer the computing,
network, and storage resources required for peak opera-
tion. When organized as a loosely coupled federated sys-

H. Balakrishnan et al.: Retrospective on Aurora 377

Local Partition of

(Lookup)

Query Processor

IO Queues

(Chord)

DHT

(XML−RPC, TCP−RPC, Local)

Transport Independent RPC

Control Data

Medusa Node

Brain

Aurora

Distributed Catalog

Fig. 7. Medusa software architecture

tem, load movements between participants based on pre-
defined contracts can significantly improve performance.

Figure 7 shows the software structure of a Medusa node.
There are two components in addition to theAurora query pro-
cessor. The Lookup component is a client of an internode dis-
tributed catalog that holds information on streams, schemas,
and queries running in the system. The Brain handles query
setup operations and monitors local load using information
about the queues (IOQueues) feeding Aurora and statistics
on box load. The Brain uses this information as input to a
bounded-price distributed load management mechanism that
converges efficiently to good load allocations [5].

The development of Medusa prompted two important
changes to the Aurora processing engine. First, it became ap-
parent that it would be useful to offer Aurora not only as a
stand-alone system but also as a library that could easily be
integrated within a larger system. Second, we felt the need for
an Aurora API, summarized in Table 1. This API is composed
of three types of methods: (1) methods to set up queries and
push or pull tuples from Aurora, (2) methods to modify query
networks at runtime (operator additions and removals), and
(3) methods giving access to performance information.

Load movement. To move operators with a relatively low ef-
fort and overhead compared to full-blown process migration,
Medusa participants use remote definitions. A remote defini-
tion maps an operator defined at one node onto an operator
defined at another node. At runtime, when a path of operators
in the boxes-and-arrows diagram needs to be moved to another
node, all that is required is for the corresponding operators to
be instantiated remotely and for the incoming streams to be
diverted to the appropriately named inputs on the new node.

For some operators, the internal operator state may need to
be moved when a task moves between machines, unless some
“amnesia” is acceptable to the application. Our current proto-
type restarts operator processing after a move from a fresh state
and the most recent position of the input streams. To support
the movement of operator state, we are adding two new func-
tions to the Aurora API and modifying the Aurora engine. The
first method freezes a query network and removes an operator
with its state by performing the following sequence of actions
atomically: stop all processing, remove a box from a query
network, extract the operator’s internal state, subscribe an out-
side client to what used to be the operator’s input streams, and

Table 1. Overview of a subset of the Aurora API

start andshutdown: Respectively starts processing and shuts
down a complete query network.
modifyNetwork: At runtime, adds or removes schemas,
streams, and operator boxes from a query network processed by
a single Aurora engine.
typecheck: Validates (part of) a query network. Computes
properties of intermediate and output streams.
enqueue anddequeue: Push and pull tuples on named streams.
listEntities anddescribe(Entity): Provide informa-
tion on entities in the current query network.
getPerfStats: Provides performance and load information.

restart processing. The second method performs the converse
actions atomically. It stops processing, adds a box to a query
network, initializes the box’s state, and restarts processing. To
minimize the amount of state moved, we are exploring freez-
ing operators around the windows of tuples on which they
operate rather than at random instants. When Medusa moves
an operator or a group of operators, it handles the forwarding
of tuples to their new locations.

Medusa employs an agoric system model to create incen-
tives for autonomous participants to handle each other’s load.
Clients outside the system pay Medusa participants for pro-
cessing their queries and Medusa participants pay each other to
handle load. Payments and load movements are based on pair-
wise contracts negotiated offline between participants. These
contracts set tightly bounded prices for migrating each unit of
load and specify the set of tasks that each participant is will-
ing to execute on behalf of its partner. Contracts can also be
customized with availability, performance, and other clauses.
Our mechanism, called the bounded-price mechanism, thus
allows participants to manage their excess load through pri-
vate and customized service agreements. The mechanism also
achieves a low runtime overhead by bounding prices through
offline negotiations.

Figure 8 shows the simulation results of a 995-node Medu-
sa system running the bounded-price load management mech-
anism. Figure 8a shows that convergence from an unbalanced
load assignment to an almost optimal distribution is fast with
our approach. Figure 8b shows the excess load remaining at
various nodes for increasing numbers of contracts.A minimum
of just seven contracts per node in a network of 995 nodes en-
sures that all nodes operate within capacity when capacity
exists in the system. The key advantages of our approach over
previous distributed load management schemes are (1) lower
runtime overhead, (2) possibility of service customization and
price discrimination, and (3) relatively invariant prices that one
participant pays another for processing a unit of load.

High availability. We are also currently exploring the run-
time overhead and recovery time tradeoffs among different
approaches to achieve high availability (HA) in distributed
stream processing, in the context of Medusa and Aurora* [4].
These approaches range from classical Tandem-style process-
pairs [6] to using upstream nodes in the processing flow as
backup for their downstream neighbors. Different approaches
also provide different recovery semantics where: (1) some tu-
ples are lost, (2) some tuples are reprocessed, or (3) operations

378 H. Balakrishnan et al.: Retrospective on Aurora

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60

C
os

t

Time (sec)

Medusa Protocol
Optimal Total Cost

a

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6 7 8

E
xc

es
s

Lo
ad

Minimum Number of Contractsb

Fig. 8a,b. Performance of Medusa load management protocol. a Con-
vergence speed with a minimum of 7 contracts/node. b Final alloca-
tion for increasing number of contracts

take over precisely where the failure happened. We discuss
these algorithms in more detail in [13]. An important HA goal
for the future is handling network partitions in addition to
individual node failures.

4 Lessons learned

4.1 Support for historical data

From our work on a variety of streaming applications, it be-
came apparent that each application required maintaining and
accessing a collection of historical data. For example, the Lin-
ear Road benchmark, which represents a realistic application,
required maintaining 10 weeks of toll history for each driver,
as well as the current positions of every vehicle and the loca-
tions of accidents tying up traffic. Historical data might be used
to support historical queries (e.g., tell me how much driver X
has spent on tolls on expressway Y over the past 10 weeks)
or serve as inputs to hybrid queries involving both streaming
and historical data [e.g., report the current toll for vehicle X
based on its current position (streamed data) and the presence
of any accidents in its vicinity (historical data)].

In the applications we have looked at, historical data take
three different forms. These forms differ by their update pat-
terns – the means by which incoming stream data are used to
update the contents of a historical collection. These forms are
summarized below.

1. Open windows (connection points): Linear Road re-
quires maintaining the last 10 weeks’ worth of toll data
for each driver to support both historical queries and in-
tegrated queries. This form of historical data resembles
a window in its FIFO-based update pattern but must be
shared by multiple queries and therefore be openly acces-
sible.

2. Aggregate summaries (latches): Linear Road requires
maintaining such aggregated historical data as: the cur-
rent toll balance for every vehicle (SUM(Toll)), the last
reported position of every vehicle (MAX(Time)), and the
average speed on a given segment over the past 5 min
(AVG(Speed)). In all cases, the update patterns involve
maintaining data by key value (e.g., vehicle or segment ID)
and using incoming tuples to update the aggregate value
that has the appropriate key. As with open windows, ag-
gregate summaries must be shared by multiple queries and
therefore must be openly accessible.

3. Tables: Linear Road requires maintaining tables of his-
torical data whose update patterns are arbitrary and deter-
mined by the values of streaming data. For example, a table
must be maintained that holds every accident that has yet
to be cleared (such that an accident is detected when mul-
tiple vehicles report the same position at the same time).
This table is used to determine tolls for segments in the
vicinity of the accident and to alert drivers approaching
the scene of the accident. The update pattern for this ta-
ble resembles neither an open window nor an aggregate
summary. Rather, accidents must be deleted from the ta-
ble when an incoming tuple reports that the accident has
been cleared. This requires the declaration of an arbitrary
update pattern.

Whereas open windows and aggregate summaries have
fixed update patterns, tables require update patterns to be
explicitly specified. Therefore, the Aurora query algebra
(SQuAl) includes an Update box that permits an update pattern
to be specified in SQL. This box has the form

UPDATE (Assume O, SQL U, Report t)

such that U is an SQL update issued with every incoming
tuple and includes variables that get instantiated with the val-
ues contained in that tuple. O specifies the assumed ordering
of input tuples, and t specifies a tuple to output whenever an
update takes place. Further, because all three forms of histor-
ical collections require random access, SQuAl also includes a
Read box that initiates a query over stored data (also specified
in SQL) and returns the result as a stream. This box has the
form

READ (Assume O, SQL Q)

such that Q is an SQL query issued with every incoming tuple
and includes variables that get instantiated with the values
contained in that tuple.

In short, the streaming applications we have looked at
share the need for maintaining and randomly accessing collec-
tions of historical data. These collections, used for both his-
torical and hybrid queries, are of three forms differing by their
update patterns. To support historical data in Aurora, we in-
clude an update operation (to update tables with user-specified
update patterns) and a read operation (to read any of the forms
of historical data).

H. Balakrishnan et al.: Retrospective on Aurora 379

4.2 Synchronization

As continuous queries, stream applications inherently rely on
shared data and computation. Shared data might be contained
in a table that one query updates and another query reads. For
example, the Linear Road application requires that vehicle
position data be used to update statistics on highway usage,
which in turn are read to determine tolls for each segment
on the highway. Alternatively, box output can be shared by
multiple queries to exploit common subexpressions or even by
a single query as a way of merging intermediate computations
after parallelization.

Transactions are required in traditional databases because
data sharing can lead to data inconsistencies. An equivalent
synchronization mechanism is required in streaming settings,
as data sharing in this setting can also lead to inconsistencies.
For example, if a toll charge can expire, then a toll assessment
to a given vehicle should be delayed until a new toll charge is
determined. The need for synchronization with data sharing is
achieved in SQuAl via the WaitFor box whose syntax is shown
below:

WaitFor (P: Predicate, T: Timeout).

This binary operator buffers each tuple t on one input stream
until a tuple arrives on the second input stream that with t
satisfies P (or until the timeout expires, in which case t is
discarded). If a Read operation must follow a given Update
operation, then a WaitFor can buffer the Read request (tuple)
until a tuple output by the Update box (and input to the sec-
ond input of WaitFor) indicates that the Read operation can
proceed.

In short, the inherent sharing possible in streaming envi-
ronments makes it sometimes necessary to synchronize op-
erations to ensure data consistency. We currently implement
synchronization in SQuAl with a dedicated operator.

4.3 Resilience to unpredictable stream behavior

Streams are by their nature unpredictable. Monitoring appli-
cations require the system to continue operation even when the
unpredictable happens. Sometimes, the only way to do this is
to produce approximate answers. Obviously, in these cases,
the system should try to minimize errors.

We have seen examples of streams that do not behave as
expected. The financial services application that we described
earlier requires the ability to detect a problem in the arrival
rate of a stream. The military application must fundamentally
adjust its processing to fit the available resources during times
of stress. In both of these cases, Aurora primitives for unpre-
dictable stream behavior were brought to bear on the problem.

Aurora makes no assumptions that a data stream arrives in
any particular order or with any temporal regularity. Tuples can
be late or out of order due to the nature of the data sources,
the network that carries the streams, or the behavior of the
operators themselves. Accordingly, our operator set includes
user-specified parameters that allow handling such “damaged”
streams gracefully.

For many of the operators, an input stream can be speci-
fied to obey an expected order. If out-of-order data are known
to the network designer not to be of relevance, the operator

will simply drop such data tuples immediately. Nonetheless,
Aurora understands that this may at times be too drastic a con-
straint and provides an optional slack parameter to allow for
some tolerance in the number of data tuples that may arrive
out of order. A tuple that arrives out of order within the slack
bounds will be processed as if it had arrived in order.

With respect to possible irregularity in the arrival rate of
data streams, the Aurora operator set offers all windowed op-
erators an optional timeout parameter. The timeout parameter
tells the operator how long to wait for the next data tuple to ar-
rive. This has two benefits: it prevents blocking (i.e., no output)
when one stream is stalled, and it offers another way for the
network designer to characterize the value of data that arrive
later than they should, as in the financial services application
in which the timeout parameter was used to determine when
a particular data packet arrived late.

4.4 XML and other feed formats adaptor required

Aurora provides a network protocol that may be used to en-
queue and dequeue tuples via Unix or TCP sockets. The proto-
col is intentionally very low-level: to eliminate copies and im-
prove throughput, the tuple format is closely tied to the format
of Aurora’s internal queue format. For instance, the protocol
requires that each packet contain a fixed amount of padding
reserved for bookkeeping and that integer and floating-point
fields in the packet match the architecture’s native format.

While we anticipate that performance-critical applications
will use our low-level protocol, we also recognize that the for-
mats of Aurora’s input streams may be outside the immediate
control of the Aurora user or administrator, for example, stock
quote data arriving in XML format from a third-party infor-
mation source. Also, even if the streams are being generated
or consumed by an application within an organization’s con-
trol, in some cases protocol stability and portability (e.g., not
requiring the client to be aware of the endian-ness of the server
architecture) are important enough to justify a minor perfor-
mance loss.

One approach to addressing these concerns is to simply
require the user to build a proxy application that accepts tuples
in the appropriate format, converts them to Aurora’s internal
format, and pipes them into theAurora process. This approach,
while simple, conflicts with one of Aurora’s key design goals
– to minimize the number of boundary crossings in the system
– since the proxy application would be external to Aurora and
hence live in its own address space.

We resolve this problem by allowing the user to provide
plug-ins called converter boxes. Converter boxes are shared
libraries that are dynamically linked into the Aurora process
space; hence their use incurs no boundary crossings. A user-
defined input converter box provides a hook that is invoked
when data arrive over the network. The implementation may
examine the data and inject tuples into the appropriate streams
in the Aurora network. This may be as simple as consum-
ing fixed-length packets and enforcing the correct byte order
on fields or as complex as transforming fully formed XML
documents into tuples. An output converter box performs the
inverse function: it accepts tuples from streams in Aurora’s
internal format and converts them into a byte stream to be
consumed by an external application.

380 H. Balakrishnan et al.: Retrospective on Aurora

Input and output converter boxes are powerful connectivity
mechanisms: they provide a high level of flexibility in dealing
with external feeds and sinks without incurring a performance
hit. This combination of flexibility and high performance is
essential in a streaming database that must assimilate data
from a wide variety of sources.

4.5 Programmatic interfaces and globally accessible
catalogs are a good idea

Initially, Aurora networks were created using the GUI and all
Aurora metadata (i.e., catalogs) were stored in an internal rep-
resentation. Our experience with the Medusa system quickly
made us realize that, in order for Aurora to be easily integrated
within a larger system, a higher-level, programmatic interface
was needed to script Aurora networks and metadata needed to
be globally accessible and updatable.

Although we initially assumed that only Aurora itself (i.e.,
the runtime and the GUI) would need direct access to the cat-
alog representation, we encountered several situations where
this assumption did not hold. For instance, in order to manage
distribution operation across multiple Aurora nodes, Medusa
required knowledge of the contents of node catalogs and the
ability to selectively move parts of catalogs from node to node.
Medusa needed to be able to create catalog objects (schema,
streams, and boxes) without direct access to the Aurora cata-
log database, which would have violated abstraction. In other
words, relying on the Aurora runtime and GUI as the sole soft-
ware components able to examine and modify catalog struc-
tures turned out to be an unworkable solution when we tried
to build sophisticated applications on the Aurora platform. We
concluded that we needed a simple and transparent catalog
representation that is easily readable and writable by external
applications. This would make it much easier to write higher-
level systems that useAurora (such as Medusa) and alternative
authoring tools for catalogs.

To this end, Aurora currently incorporates appropriate in-
terfaces and mechanisms (Sect. 3.5) to make it easy to develop
external applications to inspect and modify Aurora query net-
works. A universally readable and writable catalog represen-
tation is crucial in an environment where multiple applications
may operate on Aurora catalogs.

4.6 Performance critical

During the development of Aurora, our primary tool for keep-
ing performance in mind was a series of “microbenchmarks”.
Each of these benchmarks measured the performance of a
small part of our system, such as a single operator, or the raw
performance of the message bus. These benchmarks allowed
us to measure the merits of changes to our implementation
quickly and easily.

Fundamental to an SPE is a high-performance “message
bus”. This is the system that moves tuples from one opera-
tor to the next, storing them temporarily, as well as into and
out of the query network. Since every tuple is passed on the
bus a number of times, this is definitely a performance bot-
tleneck. Even such trivial optimizations as choosing the right
memcpy() implementation gave substantial improvements
to the whole system.

Second to the message bus, the scheduler is the core el-
ement of an SPE. The scheduler is responsible for allocat-
ing processor time to operators. It is tempting to decorate the
scheduler with all sorts of high-level optimization such as in-
telligent allocation of processor time or real-time profiling
of query plans. But it is important to remember that sched-
uler overhead can be substantial in networks where there are
many operators and that the scheduler makes no contribution
to the actual processing. All addition of scheduler functional-
ity must be greeted with skepticism and should be aggressively
profiled.

Once the core of the engine has been aggressively opti-
mized, the remaining hot spots for performance are to be found
in the implementation of the operators. In our implementation,
each operator has a “tight loop” that processes batches of in-
put tuples. This loop is a prime target for optimization. We
make sure nothing other than necessary processing occurs in
the loop. In particular, housekeeping of data structures such
as memory allocations and deallocation needs to be done out-
side of this loop so that its cost can be amortized across many
tuples.

Data structures are another opportunity for operator opti-
mization. Many of our operators are stateful; they retain in-
formation or even copies of previous input. Because these op-
erators are asked to process and store large numbers of tuples,
efficiency of these data structures is important. Ideally, pro-
cessing of each input tuple is accomplished in constant time.
In our experience, processing that is linear in the amount of
states stored is unacceptable.

In addition to the operators themselves, any parts of the
system that are used by those operators in the tight loops must
be carefully examined. For example, we have a small language
used to specify expressions for Map operators. Because these
expressions are evaluated in such tight loops, optimizing them
was important. The addition of an expensive compilation step
may even be appropriate.

To assess the relative performance of various parts of the
Aurora system, we developed a simple series of microbench-
marks. Each microbenchmark follows the following pattern:

1. Initialize Aurora using a query network q.
2. Create d dequeuers receiving data from the output of the

query network. (If d is 0, then there are no dequeuers, i.e.,
tuples are discarded as soon as they are output.)

3. Begin a timer.
4. Enqueue n tuples into the network in batches of b tuples

at a time. Each tuple is 64 bytes long.
5. Wait until the network is drained, i.e., every box is done

processing every input tuple and every dequeuer has re-
ceived every output tuple. Stop the timer. Let t be the
amount of time required to process each input tuple, i.e.,
the total amount of time passed divided by n.

For the purposes of this benchmark, we fixed n at
2,000,000 tuples. We used several different catalogs. Note that
these networks are functionally identical: every input tuple is
output to the dequeuers, and the only difference is the type
and amount of processing done to each tuple. This is neces-
sary to isolate the impact of each stage of tuple processing;
if some networks returned a different number of tuples, any
performance differential might be attributed simply to there

H. Balakrishnan et al.: Retrospective on Aurora 381

Table 2. Microbenchmark results

Query(q) # Dequers(d) Batch size(b) Average latency

A NULL 0 1 1211 ns
B NULL 0 10 176 ns
C NULL 0 100 70 ns
D NULL 0 1000 60 ns
E NULL 1 10 321 ns
F NULL 1 100 204 ns
G NULL 1 1000 191 ns
H NULL 5 1000 764 ns
I NULL 10 1000 1748 ns
J FILTER 1 1000 484 ns
K UNION 1 1000 322 ns
L UNION-CHAIN 1 1000 858 ns

being less or more work to do because of the different number
of tuples to enqueue or dequeue.

• NULL: A catalog with no boxes, i.e., input values are
passed directly to dequeuers.

• FILTER: A catalog with a filter box whose condition is
true for each tuple.

• UNION: A union box that combines the input stream with
an empty stream.

• UNION-CHAIN: A chain of five union boxes, each of
which combines the input stream with an empty stream.

Table 2 shows the performance of the benchmark with
various settings of q, d, and b.

We observe that the overhead to enqueue a tuple in Aurora
is highly dependent on the batch size but for large batch sizes
settles to 60 ns. Dequeuers add a somewhat higher overhead
(between 130 ns (G–D) and 200 ns (I–H)/5] each) because cur-
rently one copy of each tuple is made per dequeuer. Comparing
cases G and K, or cases G and L, we see that adding a box
on a tuple path incurs a delay of approximately 130 ns per tu-
ple; evaluating a simple comparison predicate on a tuple adds
about 160 ns (J–K).

These microbenchmarks measure the overhead involved in
passing tuples into and out ofAurora boxes and networks; they
do not measure the time spent in boxes performing nontrivial
operations such as joining and aggregation. Message-passing
overhead, however, can be a significant time sink in stream-
ing databases (as it was in earlier versions of Aurora). Mi-
crobenchmarking was very useful in eliminating performance
bottlenecks in Aurora’s message-passing infrastructure. This
infrastructure is now fast enough in Aurora that nontrivial box
operations are the only noticeable bottleneck, i.e., CPU time
is overwhelmingly devoted to useful work and not simply to
shuffling around tuples.

5 Future plans: Borealis

The Aurora team has secured venture capital backing to com-
mercialize the current code line. Some of the group is mor-
phing into pursuing this venture. Because of this event, there
is no reason for the Aurora team to improve the current sys-
tem. This section presents the initial ideas that we plan to
explore in a follow-on system, called Borealis, which is a

distributed stream-processing system. Borealis inherits core
stream-processing functionality from Aurora and distribution
functionality from Medusa. Borealis modifies and extends
both systems in nontrivial and critical ways to provide ad-
vanced capabilities that are commonly required by newly
emerging stream-processing applications.

The Borealis design is driven by our experience in us-
ing Aurora and Medusa, in developing several streaming ap-
plications including the Linear Road benchmark, and several
commercial opportunities. Borealis will address the following
requirements of newly emerging streaming applications.

5.1 Dynamic revision of query results

In many real-world streams, corrections or updates to previ-
ously processed data are available only after the fact. For in-
stance, many popular data streams, such as the Reuters stock
market feed, often include messages that allow the feed orig-
inator to correct errors in previously reported data. Further-
more, stream sources (such as sensors), as well as their con-
nectivity, can be highly volatile and unpredictable. As a result,
data may arrive late and miss their processing window or be
ignored temporarily due to an overload situation. In all these
cases, applications are forced to live with imperfect results,
unless the system has means to correct its processing and re-
sults to take into account newly available data or updates.

The Borealis data model will extend that of Aurora by sup-
porting such corrections by way of revision records. The goal
is to process revisions intelligently, correcting query results
that have already been emitted in a manner that is consistent
with the corrected data. Processing of a revision message must
replay a portion of the past with a new or modified value. Thus,
to process revision messages correctly, we must make a query
diagram “replayable”. In theory, we could process each revi-
sion message by replaying processing from the point of the
revision to the present. In most cases, however, revisions on
the input affect only a limited subset of output tuples, and
to regenerate unaffected output is wasteful and unnecessary.
To minimize runtime overhead and message proliferation, we
assume a closed model for replay that generates revision mes-
sages when processing revision messages. In other words, our
model processes and generates “deltas” showing only the ef-
fects of revisions rather than regenerating the entire result.
The primary challenge here is to develop efficient revision-
processing techniques that can work with bounded history.

5.2 Dynamic query modification

In many stream-processing applications, it is desirable to
change certain attributes of the query at runtime. For example,
in the financial services domain, traders typically wish to be
alerted of interesting events, where the definition of “interest-
ing” (i.e., the corresponding filter predicate) varies based on
current context and results. In network monitoring, the sys-
tem may want to obtain more precise results on a specific
subnetwork if there are signs of a potential denial-of-service
attack. Finally, in a military stream application that MITRE
[19] explained to us, they wish to switch to a “cheaper” query
when the system is overloaded. For the first two applications,

382 H. Balakrishnan et al.: Retrospective on Aurora

it is sufficient to simply alter the operator parameters (e.g.,
window size, filter predicate), whereas the last one calls for
altering the operators that compose the running query.Another
motivating application comes again from the financial services
community. Universally, people working on trading engines
wish to test out new trading strategies as well as debug their
applications on historical data before they go live. As such,
they wish to perform “time travel” on input streams. Although
this last example can be supported in most current SPE proto-
types (i.e., by attaching the engine to previously stored data),
a more user-friendly and efficient solution would obviously
be desirable.

Two important features that will facilitate online modifi-
cation of continuous queries in Borealis are control lines and
time travel. Control lines extend Aurora’s basic query model
with the ability to change operator parameters as well as op-
erators themselves on the fly. Control lines carry messages
with revised box parameters and new box functions. For ex-
ample, a control message to a Filter box can contain a ref-
erence to a boolean-valued function to replace its predicate.
Similarly, a control message to an Aggregate box may con-
tain a revised window size parameter. Additionally, each con-
trol message must indicate when the change in box semantics
should take effect. Change is triggered when a monotonically
increasing attribute received on the data line attains a certain
value. Hence, control messages specify an <attribute, value>
pair for this purpose. For windowed operators like Aggregate,
control messages must also contain a flag to indicate if open
windows at the time of change must be prematurely closed for
a clean start.

Time travel allows multiple queries (different queries or
versions of the same query) to be easily defined and executed
concurrently, starting from different points in the past or “fu-
ture” (typically by running a simulation of some sort). To
support these capabilities, we leverage three advanced mech-
anisms in Borealis: enhanced connection points, connection
point versions, and revision messages. To facilitate time travel,
we define two new operations on connection points. The replay
operation replays messages stored at a connection point from
an arbitrary message in the past. The offset operation is used
to set the connection point offset in time. When offset into
the past, a connection point delays current messages before
pushing them downstream. When offset into the future, the
connection point predicts future data. When producing future
data, various prediction algorithms can be used based on the
application. A connection point version is a distinctly named
logical copy of a connection point. Each named version can be
manipulated independently. It is possible to shift a connection
point version backward and forward in time without affecting
other versions.

To replay history from a previous point in time t, we use
revision messages. When a connection point receives a re-
play command, it first generates a set of revision messages
that delete all the messages and revisions that have occurred
since t. To avoid the overhead of transmitting one revision per
deleted message, we use a macro message that summarizes all
deletions. Once all messages are deleted, the connection point
produces a series of revisions that insert the messages and pos-
sibly their following revisions back into the stream. During
replay, all messages and revisions received by the connection
point are buffered and processed only after the replay termi-

nates, thus ensuring that simultaneous replays on any path in
the query diagram are processed in sequence and do not con-
flict. When offset into the future, time-offset operators predict
future values. As new data become available, these predictors
can (but do not have to) produce more accurate revisions to
their past predictions. Additionally, when a predictor receives
revision messages, possibly due to time travel into the past, it
can also revise its previous predictions.

5.3 Distributed optimization

Currently, commercial stream-processing applications are
popular in industrial process control (e.g., monitoring oil re-
fineries and cereal plants), financial services (e.g., feed pro-
cessing, trading engine support and compliance), and network
monitoring (e.g., intrusion detection, fraud detection). Here
we see a server-heavy optimization problem – the key chal-
lenge is to process high-volume data streams on a collection
of resource-rich “beefy” servers. Over the horizon, we see a
very large number of applications of wireless sensor technol-
ogy (e.g., RFID in retail applications, cell phone services).
Here we see a sensor-heavy optimization problem – the key
challenges revolve around extracting and processing sensor
data from a network of resource-constrained “tiny” devices.
Further over the horizon, we expect sensor networks to be-
come faster and increase in processing power. In this case
the optimization problem becomes more balanced, becoming
sensor-heavy/server-heavy. To date, systems have exclusively
focused on either a server-heavy environment or a sensor-
heavy environment. Off into the future, there will be a need
for a more flexible optimization structure that can deal with
a very large number of devices and perform cross-network
sensor-heavy/server-heavy resource management and optimi-
zation.

The purpose of the Borealis optimizer is threefold. First, it
is intended to optimize processing across a combined sensor
and server network. To the best of our knowledge, no previous
work has studied such a cross-network optimization problem.
Second, QoS is a metric that is important in stream-based ap-
plications, and optimization must deal with this issue. Third,
scalability, sizewise and geographical, is becoming a signif-
icant design consideration with the proliferation of stream-
based applications that deal with large volumes of data gener-
ated by multiple distributed sensor networks. As a result, Bo-
realis faces a unique, multiresource, multimetric optimization
challenge that is significantly different than the optimization
problems explored in the past. Our current thinking is that
Borealis will rely on a hierarchical, distributed optimizer that
runs at different time granularities.

Another part of the Borealis vision involves addressing re-
covery and high-availability issues. High availability demands
that node failure be masked by seamless handoff of processing
to an alternate node. This is complicated by the fact that the
optimizer will dynamically redistribute processing, making it
more difficult to keep backup nodes synchronized. Further-
more, wide-area Borealis applications are not only vulnerable
to node failures but also to network failures and more impor-
tantly to network partitions. We have preliminary research in
this area that leverages Borealis mechanisms including con-
nection point versions, revision tuples, and time travel.

H. Balakrishnan et al.: Retrospective on Aurora 383

5.4 Implementation plans

We have started building Borealis. As Borealis inherits much
of its core stream-processing functionality from Aurora, we
can effectively borrow many of the Aurora modules including
the GUI, the XML representation for query diagrams, por-
tions of the runtime system, and much of the logic for boxes.
Similarly, we are borrowing some networking and distribution
logic from Medusa. With this starting point, we hope to have
a working prototype within a year.

Acknowledgements. This work was supported in part by the Na-
tional Science Foundation under Grants IIS-0086057, IIS-0325525,
IIS-0325703, IIS-0325838, and IIS-0205445 and by Army contract
DAMD17-02-2-0048. We would like to thank all members of the
Aurora and the Medusa projects at Brandeis University, Brown Uni-
versity, and MIT. We are also grateful to the anonymous reviewers
for their invaluable comments.

References

1. A guide for hot lane development: A U.S. Depart-
ment of Transportation Federal Highway Administration.
http://www.itsdocs.fhwa.dot.gov/JPODOCS/
REPTS_TE/13668.html

2. Abadi D, Carney D, Çetintemel U, Cherniack M, Convey C,
Erwin C, Galvez E, Hatoun M, Hwang J, Maskey A, Rasin A,
Singer A, Stonebraker M, Tatbul N, Xing Y, Yan R, Zdonik S
(2003) Aurora: A data stream management system (demo de-
scription). In: ACM SIGMOD

3. Abadi D, Carney D, Çetintemel U, Cherniack M, Convey C, Lee
S, Stonebraker M, Tatbul N, Zdonik S (2003) Aurora: A new
model and architecture for data stream management. VLDB J
12(2):120–139

4. Arasu A, Cherniack M, Galvez E, Maier D, Maskey A, Ryvkina
E, Stonebraker M, Tibbetts R (2004) Linear Road:A benchmark
for stream data management systems. In: VLDB conference,
Toronto (in press)

5. Balazinska M, Balakrishnan H, Stonebraker M (2004) Contract-
based load management in federated distributed systems. In:
NSDI symposium

6. Barlett J, Gray J, Horst B (1986) Fault tolerance in tandem com-
puter systems. Technical Report TR-86.2, Tandem Computers

7. Carney D, Çetintemel U, Cherniack M, Convey C, Lee S, Seid-
man G, Stonebraker M, Tatbul N, Zdonik S (2002) Monitoring
streams – a new class of data management applications. In:
VLDB conference, Hong Kong

8. Carney D, Çetintemel U, Rasin A, Zdonik S, Cherniack M,
Stonebraker M (2003) Operator scheduling in a data stream
manager. In: VLDB conference, Berlin, Germany

9. Chandrasekaran S, Deshpande A, Franklin M, Hellerstein J,
Hong W, Krishnamurthy S, Madden S, Raman V, Reiss F, Shah
M (2003) TelegraphCQ: Continuous dataflow processing for an
uncertain world. In: CIDR conference

10. Cherniack M, Balakrishnan H, Balazinska M, Carney D,
Çetintemel U, Xing Y, Zdonik S (2003) Scalable distributed
stream processing. In: CIDR conference, Asilomar, CA

11. Congestion pricing: a report from intelligent transportation sys-
tems (ITS). http://www.path.berkeley.edu

12. DeWitt D, Naughton J, Schneider D (1991) An evaluation of
non-equijoin algorithms. In:VLDB conference, Barcelona, Cat-
alonia, Spain

13. Hwang J, Balazinska M, RasinA, Çetintemel U, Stonebraker M,
Zdonik S (2003) A comparison of stream-oriented high-
availability algorithms. Technical Report CS-03-17, Depart-
ment of Computer Science, Brown University, Providence, RI

14. LernerA, Shasha D (2003) AQuery: Query language for ordered
data, optimization techniques, and experiments. In: VLDB con-
ference, Berlin, Germany

15. Motwani R, Widom J, Arasu A, Babcock B, Babu S, Datar
M, Manku G, Olston C, Rosenstein J, Varma R (2003) Query
processing, approximation, and resource management in a data
stream management system. In: CIDR conference

16. Poole RW (2002) Hot lanes prompted by federal program.
http://www.rppi.org/federalhotlanes.html

17. Seshadri P, Livny M, Ramakrishnan R (1995) SEQ:A model for
sequence databases. In: IEEE ICDE conference, Taipei, Taiwan

18. Tatbul N, Çetintemel U, Zdonik S, Cherniack M, Stonebraker M
(2003) Load shedding in a data stream manager. In: VLDB
conference, Berlin, Germany

19. The MITRE Corporation. http://www.mitre.org/
20. US Army Medical Research and Materiel Command.

https://mrmc-www.army.mil/

