
Flowtune: Flowlet Control for Datacenter Networks

Jonathan Perry, Hari Balakrishnan and Devavrat Shah
Computer Science and Artificial Intelligence Lab, M.I.T.

Email: {yonch, hari, devavrat}@mit.edu

Abstract
Rapid convergence to a desired allocation of network

resources to endpoint traffic is a difficult problem. The
reason is that congestion control decisions are distributed
across the endpoints, which vary their offered load in
response to changes in application demand and network
feedback on a packet-by-packet basis. We propose a dif-
ferent approach for datacenter networks, flowlet control,
in which congestion control decisions are made at the
granularity of a flowlet, not a packet. With flowlet con-
trol, allocations have to change only when flowlets arrive
or leave. We have implemented this idea in a system
called Flowtune using a centralized allocator that receives
flowlet start and end notifications from endpoints. The
allocator computes optimal rates using a new, fast method
for network utility maximization, and updates endpoint
congestion-control parameters. Experiments show that
Flowtune outperforms DCTCP, pFabric, sfqCoDel, and
XCP on tail packet delays in various settings, converging
to optimal rates within a few packets rather than over
several RTTs. Benchmarks on an EC2 deployment show
a fairer rate allocation than Linux’s Cubic. A data aggre-
gation benchmark shows 1.61× lower p95 coflow com-
pletion time.

1 Introduction

Over the past thirty years, network congestion control
schemes—whether distributed [24, 8, 21, 20, 39] or cen-
tralized [33], whether end-to-end or with switch sup-
port [12, 16, 17, 35, 26, 38, 32], and whether in the
wide-area Internet [13, 42] or in low-latency datacen-
ters [2, 3, 4, 22, 30]—have operated at the granularity
of individual packets. Endpoints transmit data at a rate
(window) that changes from packet to packet.

Packet-level network resource allocation has become
the de facto standard approach to the problem of deter-
mining the rates of each flow in a network. By contrast, if
it were possible to somehow determine optimal rates for
a set of flows sharing a network, then those rates would
have to change only when new flows arrive or flows leave

the system. Avoiding packet-level rate fluctuations could
help achieve fast convergence to optimal rates.

For this reason, in this paper, we adopt the position
that a flowlet, and not a packet, is a better granularity for
congestion control. By “flowlet”, we mean a batch of
packets that are backlogged at a sender; a flowlet ends
when there is a threshold amount of time during which a
sender’s queue is empty. Our idea is to compute optimal
rates for a set of active flowlets and to update those rates
dynamically as flowlets enter and leave the network.1

We have developed these ideas in a system called Flow-
tune. It is targeted at datacenter environments, although it
may also be used in enterprise and carrier networks, but
is not intended for use in the wide-area Internet.

In datacenters, fast convergence of allocations is crit-
ical, as flowlets tend to be short (one study shows that
the majority of flows are under 10 packets [9]) and link
capacities are large (40 Gbits/s and increasing). If it takes
longer than, say, 40 µs to converge to the right rate, then
most flowlets will have already finished. Most current ap-
proaches use distributed congestion control, and generally
take multiple RTTs to converge. By contrast, Flowtune
uses a centralized rate allocator.

Computing the optimal rates is difficult because even
one flowlet arriving or leaving could, in general, cause
updates to the rates of many existing flows. Flows that
share a bottleneck with the new or ending flow would
change their rates. But, in addition, if some of these flows
slow down, other flows elsewhere in the network might
be able to speed up, and so on. The effects can cascade.

To solve this problem in a scalable way, Flowtune uses
the network utility maximization (NUM) framework, pre-
viously developed to analyze distributed congestion con-
trol protocols [27, 29]. In Flowtune, network operators
specify an explicit objective. We introduce a new method,
termed Newton-Exact-Diagonal (NED), that converges
quickly to the allocation that maximizes the specified
utility (§2).

Flowtune can achieve a variety of desirable objectives.
In this paper, we focus on proportional fairness, i.e.,

1Long-lived flows that send intermittently generate multiple flowlets.



(a) The strawman solution runs the optimizer until it converges,
but then system is slow to react to updates of flowlet start/end.

(b) Performing just one iteration reduces reaction time, but
results in over-allocation while the algorithm converges.

(c) Flowtune adds a normalization step that eliminates link over-
allocation while achieving 99.7% of optimal throughput.

Figure 1: Motivation for the allocator architecture.

F-NORM

NED

normalized
rates

flowlet
start/end

flow routes
(periodically)rates

Allocator

...

Endpoint

Endpoint

Endpoint

...

Figure 2: Flowtune components. Endpoints send no-
tifications of new flowlets starting and current flowlets
finishing to the allocator. The NED optimizer computes
rates, which F-NORM then normalizes and sends back to
Endpoints; endpoints adjust sending rates accordingly.

max∑i U(xi), where U(xi) = log xi, and xi is the through-
put of flowlet i. In general, however, NED supports any
objective where the utility is a function of the flow’s allo-
cated rate.2

Endpoints report to the allocator whenever a flowlet
starts or ends. Rather than waiting for the optimization
to converge before setting rates (Figure 1a), the alloca-
tor continuously updates its set of active flowlets and
sets intermediate rates between iterations of the optimizer
(Figure 1b). These intermediate rates may temporarily
exceed the capacity of some links, causing queuing de-
lays. To reduce queuing, Flowtune uses a rate normalizer
(F-NORM, §3) to scale-down the computed values (Fig-
ure 1c).

The normalizer’s results are sent to the endpoints. End-
points transmit according to these rates (they are trusted,
similar to trust in TCP transmissions today). Figure 2
shows the system components and their interactions.

2Under some requirements of utility functions, discussed in §2.

Flowtune does not select flow paths, but rather works
given the paths the network selects for each flow (§6).

A scalable implementation of the optimization al-
gorithm on CPUs would run in parallel on multiple
cores. Unfortunately, straightforward implementations
are slowed by expensive cache-coherence traffic. We
propose a partitioning of flows to cores where each core
only interacts with a small set of links. Each core has
copies of link state it needs. Before manipulating link
state, the algorithm aggregates all modified copies of link
state to authoritative copies. Afterwards, the algorithm
distributes copies back to the cores (§4). On 40 Gbits/s
links, this scheme allows our implementation to allocate
15.36 Tbit/s in 8.29 on 4 Nehalem cores, up to 184 Tbit/s
in 30.71 µs on 64 Nehalem cores (§5.2).

We implemented Flowtune in a Linux kernel module
and a C++ allocator that implements the multi-core NED
algorithm and uses kernel-bypass for NIC access. The
system enforces rate allocations on unmodified Linux
applications. We deployed Flowtune on Amazon Web
Services instances; experiments show the servers are able
to achieve their fair share of available network resources,
with much better fairness than the Linux baseline (which
uses Cubic). Flowtune reduced the 95th percentile (p95)
of coflow completion times [10] by 1.61× on a data ag-
gregation benchmark.

Simulation results show that Flowtune out-performs
distributed congestion control methods like DCTCP, pFab-
ric, Cubic-over-sfqCoDel, and XCP on metrics of interest
like the convergence time and the p99 of the flow comple-
tion time (FCT).

Compared with the centralized arbitration in Fast-
pass [33], Flowtune offers similar fast convergence, but
handles 10.4× traffic per core and utilizes 8× more cores,
for an improvement in throughput by a factor of 83.2.

2 Rate Allocation in Flowtune

Solving an explicit optimization problem allows Flowtune
to converge rapidly to the desired optimal solution. To
our knowledge, NED is the first NUM scheme designed
specifically for fast convergence in the centralized setting.

2.1 Intuition
The Flowtune rate allocator chooses flow rates by intro-
ducing link prices. The allocator adjusts link prices based
on demand, increasing the price when the demand is high
and decreasing it when demand is low.

Figure 3 shows how the allocator chooses a flow’s rate
given link prices. It takes the flow’s utility function (3a).
Then, it determines the flow’s price per unit bandwidth,
which is the sum of prices on links it traverses (3b). The
utility minus price determines the profit (3c); the allocator
chooses the rate that maximizes the flow’s profit.



0.0

0.5

1.0

1.5

2.0

0 10 20 30 40
rate (Gbit/s)

ut
ili

ty

(a) Each flow has a
utility function.

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40
rate (Gbit/s)

pr
ic

e
(b) Link prices de-
termine the cost
per unit rate.

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40
rate (Gbit/s)

pr
of

it x

maximium
profit

(c) The rate max-
imizes profit, i.e.,
utility minus price.

Figure 3: Illustration of how NUM chooses a flow rate.

Intuitively, prices should be adjusted strongly when
demand is far from capacity, and gently when it is close.
But by exactly how much should an algorithm adjust
prices in a given setting?

The exact recipe for adjusting prices is the key dif-
ferentiator among different algorithms to solve NUM.
Simplistic methods can adjust prices too gently and be
slow to converge, or adjust prices too aggressively and
cause wild fluctuations in rates, or not even converge.

NED converges quickly because it adjusts prices not
only using the difference between demand and capac-
ity, but also using an estimate of how strongly rates will
change for a given change in price.

2.2 The NUM framework
The following table summarizes the notation used in this
paper:

L Set of all links L(s) Links traversed by flow s
S Set of all flows S(`) Flows that traverse link `
p` Price of link ` c` Capacity of link `
xs Rate of flow s Us(x) Utility of flow s
G` By how much link ` is over-allocated
H`` How much flow rates on ` react to a change in p`

The goal is to allocate rates to all flows subject to
network resource constraints: for each link ` ∈ L,

∑
s∈S(`)

xs ≤ c`. (1)

Note that in general many allocations satisfy this con-
straint. Among these, NUM proposes that we should
choose the one that maximizes the overall network util-
ity, ∑s∈S Us(xs). Thus, the rate allocation should be the
solution to the following optimization problem:

max∑
s

Us(xs) (2)

over xs ≥ 0, for all s ∈ S,

subject to (1).

Solving NUM using prices. The capacity constraints in
(1) make it hard to solve the optimization problem directly.
Kelly’s approach to solving NUM [27] is to use Lagrange
multipliers, which replace the hard capacity constraints
with a “utility penalty” for exceeding capacities. This is
done by introducing prices for links.

With prices, each flow selfishly optimizes its own profit,
i.e., chooses a rate such that its utility, minus the price
it pays per unit bandwidth on the links it traverses, is
maximized. Although each flow is selfish, the system still
converges to a global optimum because prices force flows
to make globally responsible rate selections.3

An important quantity to consider when adjusting
prices is by how much each link is over-allocated, i.e.,
G` = (∑s∈S(`) xs)− c`. If G` > 0, the link price should
increase; if G` < 0 it should decrease.

Appendix A outlines why price duality works. Related
NUM algorithms are discussed in §7 and Appendix B.

2.3 The NED algorithm
The key observation in NED that enables its fast conver-
gence is that given the utility functions, it is possible to
directly compute (1) flow rates given prices, and (2) how
strongly flows on a link ` will react to a change in that
link’s price, which we denote H``.4

Direct computation of values eliminates the need to
measure the network, and thus greatly speeds up algo-
rithm iterations. In contrast to the full Newton’s method,
prices updates based on the diagonal can be computed
quickly enough on CPUs for sizeable topologies. This
results in the update rule:

p`← p`+ γ G` H−1
`` .

We note that the ability to directly compute H`` originates
from the ability to reliably obtain the above values, not
the centralization of the allocator. When the endpoints
are trusted, a distributed implementation of NED can use
the endpoints to compute and supply these values.

Algorithm 1 shows Flowtune’s Newton-Exact-
Diagonal (NED) rate allocation algorithm. In Flowtune,
the initialization of prices happens only once, when the
system first starts. The allocator starts without any flows,
and link prices are all set to 1. When flows arrive, their
initial rates are computed using current prices.

Choice of utility function. NED admits any utility func-
tion Us that is strictly concave, differentiable, and mono-
tonically increasing. For example, the logarithmic utility
function, U(x) = w logx (for some weight w > 0), will
optimize weighted proportional fairness [27].

3We discuss the requirements for convergence further below.
4H is in fact the Hessian; NED computes the Hessian’s diagonal,

H``. The Hessian’s diagnoal is where NED gets its name.



Algorithm 1 Single iteration of Newton-Exact-Diagonal
NED updates rates x = (xs) given prices p = (p`) (“rate
update” step). Then, in the next step of the iteration
(“price update”), it uses the updated rates to update the
prices.
Rate update. Given prices p = (p`), for each flow s ∈ S,
update the rate:

xs = xs(p) =
(
U ′s

)−1
( ∑
`∈L(s)

p`). (3)

For example, if Us(x) = w logx, then xs =
w

∑`∈L(s) p`
.

Price update. Given updated rates x = x(p) = (xs(p)) as
described above, update the price of each link ` ∈ L:

p`←max
(

0, p`− γH−1
`` G`

)
, (4)

where γ > 0 is a fixed algorithm parameter (e.g. γ = 1),
G` = (∑s∈S(`) xs)− c`, H`` = ∑s∈S(`)

∂xs(p)
∂ p`

.

From (3), ∂xs(p)
∂ p`

=
(
(U ′s)

−1
)′(

∑m∈L(s) pm
)
.

3 Rate normalization

The optimizer works in an online setting: when the set
of flows changes, the optimizer does not start afresh, but
instead updates the previous prices with the new flow
configuration. While the prices re-converge, there are
momentary spikes in throughput on some links. Spikes
occur because when one link price drops, flows on the
link increase their rates and cause higher, over-allocated
demand on other links (shown in §3).

Normally, allocating rates above link capacity results
in queuing. The centralized optimizer can avoid queuing
and its added latency by normalizing allocated rates to
link capacities. We propose two schemes for normaliza-
tion: uniform normalization and flow normalization. For
simplicity, the remainder of this section assumes all links
are allocated non-zero throughput; it is straightforward to
avoid division by zero in the general case.

Uniform normalization (U-NORM): U-NORM
scales the rates of all flows by a factor such that the most
congested link will operate at its capacity. U-NORM first
computes for each link the ratio of the link’s allocation to
its capacity r` = ∑s∈S(`) xs/c`. The most over-congested
link has the ratio r? = max`∈L r`; all flows are scaled
using this ratio:

x̄s =
xs

r?
. (5)

The benefits of uniform scaling of all flows by the same
constant are the scheme’s simplicity, and that it preserves

the relative sizes of flows; for utility functions of the form
w logxs, this preserves the fairness of allocation. However,
as shown in §3, uniform scaling tends to scale down flows
too much, reducing total network throughput.

Flow normalization (F-NORM) Per-flow normaliza-
tion scales each flow by the factor of its most congested
link. This scales down all flows passing through a link
` by at least a factor of r`, which guarantees the rates
through the link are at most the link capacity. Formally,
F-NORM sets

x̄s =
xs

max`∈L(s) r`
. (6)

F-NORM requires per-flow work to calculate normaliza-
tion factors, and does not preserve relative flow rates, but
a few over-allocated links do not hurt the entire network’s
throughput. Instead, only the flows traversing congested
links are scaled down.

We note that the normalization of flow rates follows
a similar structure to NED but instead of prices, the al-
gorithm computes normalization factors. This allows
F-NORM to reuse the multi-core design of NED, as de-
scribed in §4.

4 Scalability

The allocator scales by working on multiple cores on
one of more machines. Our design and implementation
focuses on optimizing 2-stage Clos networks such as a
Facebook fabric pod [5] or a Google Jupiter aggregation
block [36], the latter consisting of 6,144 servers in 128
racks. We believe the techniques could be generalized to
3-stage topologies, but demonstrating that is outside the
scope of this paper.

A strawman multiprocessor algorithm, which arbitrar-
ily distributes flows to different processors, will perform
poorly because NED uses flow state to update link state
when it computes aggregate link rates from flow rates:
updates to a link from flows on different processors will
cause significant cache-coherence traffic, slowing down
the computation.
Reducing concurrent updates. Now consider an algo-
rithm that distributes flows to processors based on source
rack. This algorithm is still likely to be sub-optimal:
flows from many source racks can all update links to the
same destination, again resulting in expensive coherence
traffic. However, this grouping has the property that all
updates to links connecting servers→ToR switches and
ToR→aggregation switches (i.e., going up the topology)
are only performed by the processor responsible for the
source rack. A similar grouping by destination rack has
locality in links going down the topology. Flowtune uses
this observation for its multi-processor implementation.



(a) Upward links from a set of racks
form an upward LinkBlock. Only flows
originating from these racks update this
LinkBlock.

(b) Downward links towards a set of
racks form a downward LinkBlock. Only
flows destined to these racks update this
LinkBlock.

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

fb

src

dst

lb

lb

lb

lb

lb lb lb lb

(c) Flows are partitioned by source and
destination into FlowBlocks, each updat-
ing an upward (blue) and a downward
(red) LinkBlock.

Figure 4: Partitioning of network state.

(a) Step 1: 2x2 processors. (b) Step 2: 4x4 processors. (c) Step 3: 8x8 processors.

Figure 5: Aggregation of per-processor LinkBlock state in a 64-processor setup. At the end of step m, blocks of 2mx2m
processors have aggregated upward LinkBlocks on the main diagonal, and downward LinkBlocks on the secondary
diagonal.

Figure 4 shows the partitioning of flows and links into
FlowBlocks and LinkBlocks. Groups of network racks
form blocks (two racks per block in the figure). All links
going upwards from a block form an upward LinkBlock,
and all links going downward towards a block form a
downward LinkBlock. Flows are partitioned by both their
source and destination blocks into FlowBlocks. This parti-
tioning reduces concurrent updates, but does not eliminate
them, as each upward LinkBlock is still updated by all
FlowBlocks in the same source block. Similarly, down-
ward LinkBlocks are updated by all FlowBlocks in the
same destination block.

Eliminating concurrent updates. To eliminate con-
current updates completely, each FlowBlock works
on private, local copies of its upward and downward
LinkBlocks. The local copies are then aggregated into
global copies. The algorithm then proceeds to update
link prices on the global copies, and distributes the results
back to FlowBlocks, so they again have local copies of the
prices. Distribution follows the reverse of the aggregation
pattern.

Figure 5 shows the LinkBlock aggregation pattern.
Each aggregation step m combines LinkBlocks within
each 2m x 2m group of processes to the group diagonals,
with the main diagonal aggregating upward LinkBlocks,
and the secondary diagonal downward LinkBlocks. The
aggregation scheme scales well with the number of
cores. n2 processors require only log2 n steps rather than

log2 n2—the number of steps increases only every qua-
drupling of processors.

The aggregation pattern has uniform bandwidth re-
quirements: when aggregating 2m×2m processors, each
m×m sub-group sends and receives the same amount of
LinkBlocks state to/from its neighbor sub-groups. Unlike
FlowBlocks, whose size depends on the traffic pattern,
each LinkBlock contains exactly the same number of
links, making transfer latency more predictable.

Sending LinkBlocks is also much cheaper than sending
FlowBlocks: datacenter measurements show average flow
count per server at tens to hundreds of flows [18, 2], while
LinkBlocks have a small constant number of links per
server (usually between one and three).

Multi-machine allocator. The LinkBlock-FlowBlock
partitioning distributes the allocator on multiple machines.
Figure 5 shows a setup with four machines with 16 cores
each. In steps (a) and (b), each machine aggregates
LinkBlocks internally, then in (c), aggregation is per-
formed across machines; each machine receives from one
machine and sends to another. This arrangement scales to
any 2m x2m collection of machines.

5 Evaluation

We evaluate Flowtune using a cluster deployment, micro-
benchmarks, and ns-2 and numeric simulations. ns-
2 simulations allows comparison with state-of-the art
schemes whose implementations are only readily avail-



able in the ns-2 simulator: pFabric [4], sfqCoDel [32],
and XCP [26].

EC2 Experiments (§5.1)
(A) On Amazon EC2, Flowtune’s sharing of available
throughput is more fair than the baseline Linux imple-
mentation running Cubic.
(B) Flowtune makes transfers on EC2 more predictable:
Many-to-One Coflow Completion Time was sped up by
1.61× in p95 and 1.24× in p90.

Multicore micro-benchmarks (§5.2)
(C) A multi-core implementation optimizes traffic from
384 servers on 4 cores in 8.29 µs. 64 cores schedule
4608 servers’ traffic in 30.71 µs – around 2 network
RTTs.

ns-2 Simulations (§5.3)
(D) Flowtune converges quickly to a fair allocation
within 100 µs, orders of magnitude faster than other
schemes.
(E) The amount of traffic to and from the allocator de-
pends on the workload; it is < 0.17%, 0.57%, and 1.13%
of network capacity for the Hadoop, cache, and web
workloads.
(F) Rate update traffic can be reduced by 69%, 64%,
and 33% when allocating 0.95 of link capacities on the
Hadoop, cache, and web workloads.
(G) As the network size increases, allocator traffic takes
the same fraction of network capacity.
(H) Flowtune achieves low p99 flow completion time:
8.6×-10.9× and 1.7×-2.4× lower than DCTCP and
pFabric on 1-packet flowlets, and 3.5×-3.8× than sfq-
CoDel on 10-100 packets.
(I) Flowtune keeps p99 network queuing delay under
8.9 µs, 12× less than DCTCP.
(J) Flowtune maintains a negligible rate of drops. sfq-
CoDel drops up to 8% of bytes, pFabric 6%.
(K) Flowtune achieves higher proportional-fairness
score than DCTCP, pFabric, sfqCoDel, and XCP.

Numeric simulation (§5.4)
(L) Normalization is important; without it, NED over-
allocates links by up to 140 Gbits/s.
(M) F-NORM achieves over 99.7% of optimal through-
put. U-NORM is not competitive.

5.1 Amazon EC2 deployment
We deployed Flowtune on 10 Amazon EC2
c4.8xlarge instances running Ubuntu 16.04
with 4.4.0 Linux kernels. One of the instances ran the
allocator and had direct access to the NIC queues using
SR-IOV. The other instances ran the workload.

Server module. We implemented the Flowtune client
side using a kernel module, requiring no modification to
applications. The module reports to the allocator when
socket buffers transition between empty and non-empty,
and enforces allocated rates by delaying packets when
the rate limit is exceeded. An implementation could also
change TCP slow-start and loss/marking behavior, but our
implementation keeps those unchanged.
Protocol. Communication uses the Flowtune protocol
over a variant of the Fastpass Control Protocol (FCP) for
transport. The Flowtune protocol allows endpoints to pro-
cess payloads without head-of-line blocking, so a dropped
packet does not increase latency for non-dropped packets.
The Flowtune protocol synchronizes state between the
allocator and endpoints; when reacting to loss, instead of
retransmitting old state, participants send the most recent
state, and that only if the acknowledged state differs.
Allocator. The allocator is written in C++ and accesses
NIC queues directly using the DPDK library. A hash ta-
ble maps endpoints to their flow state, which the protocol
maintains in synchronization with the endpoints. When
allocated flow rates differ from the allocations acknowl-
edged by the endpoints, the allocator triggers rate update
messages.
Measurement. The experiment harness achieves accu-
rate workload timing by measuring the clock offset of
each instance using ntpdate. Before starting/stopping
the workload, processes on the measured instances call
nanosleep with appropriate amounts to compensate.
(A) Fairness. In an 8-to-1 experiment, eight senders
start every 50 ms in sequence, and then finish similarly.
Figure 6 shows the rates of each flow as the experiment
progresses. Flowtune shares the throughput much more
fairly than the baseline: the rates of the different flows
overlap at equal division of throughput. The baseline rates
oscillate, even with only 3 competing flows.
(B) Coflow completion time. Here, 8 senders each make
25 parallel transfers of 10 Mbytes to a single receiver.
This transfer pattern models Spark aggregating data from
worker cores, or a slice of a larger MapReduce shuffle
stage. Figure 7 shows results from 100 runs with Flow-
tune vs. the baseline. Flowtune achieves more predictable
results. The reduction in different percentiles are summa-
rized in the following table.

Metric Baseline Flowtune Speedup
median 1.859249 1.787622 1.04×

p90 2.341086 1.881433 1.24×
p95 3.050718 1.894544 1.61×

5.2 Multicore micro-benchmarks
We benchmarked NED’s multi-core implementation on a
machine with 8 Intel E7-8870 CPUs, each with 10 physi-



Baseline Flowtune

0.0

2.5

5.0

7.5

10.0

0 200 400 600 800 0 200 400 600 800
Time (ms)

T
hr

ou
gh

pu
t (

G
bp

s)

Figure 6: 8-to-1 experiment on Amazon EC2. Flowtune shares available
throughput more fairly than baseline Linux.

0.00

0.25

0.50

0.75

1.00

1600 2000 2400 2800 3200
Coflow Completion Time (ms)

C
D

F

Baseline

Flowtune

Figure 7: AWS EC2 data aggregation
benchmarks. Flowtune coflows are
more predictable and generally faster.

cal cores running at 2.4 GHz. We divided the network into
2, 4 and 8 blocks, giving runs with 4, 16, and 64 Flow-
Blocks. In the 4-core run, we mapped all FlowBlocks
to the same CPU. With higher number of cores, we di-
vided all FlowBlocks into groups of 2-by-2, and put two
adjacent groups on each CPU.

(C) Iteration time. This micro-benchmark measures the
average NED iteration time, i.e., the “Run 1 iteration”
in Figure 1c. The following table shows the number of
cycles taken for different choices of network sizes and
loads:

Cores Nodes Flows Cycles Time
4 384 3072 19896.6 8.29 µs

16 768 6144 21267.8 8.86 µs
64 1536 12288 30317.6 12.63 µs
64 1536 24576 33576.2 13.99 µs
64 1536 49152 40628.5 16.93 µs
64 3072 49152 57035.9 23.76 µs
64 4608 49152 73703.2 30.71 µs

Rows 1-3 show run-times with increasing number of
cores, rows 3-5 with increasing number of flows, and rows
5-7 with increasing number of endpoints. These results
show general-purpose CPUs are able to optimize network
allocations on hundred of nodes within microseconds.

Rate allocation for 49K flows from 4608 endpoints
takes 30.71 µs, around 2 network RTTs, or 3 RTTs consid-
ering an RTT for control messages to obtain the rate. TCP
takes tens of RTTs to converge – significantly slower.

Communication between CPUs in the aggregate and
distribute steps took more than half of the runtime in all
experiments, for example > 20 µs with 4068 nodes. This
implies it should be straightforward to perform the aggre-
gate and distribute steps on multiple servers in a cluster
using commodity hardware and kernel-bypass libraries.

Note that this benchmark only captures the computa-
tion required to optimize flows; communication between
the servers and the allocator is evaluated in §5.3.2, and
discussed in §6.

Throughput scaling and comparison to Fastpass.
Flowtune scales to larger networks than Fastpass, which
reported 2.2 Tbit/s on 8 cores. Fastpass performs per-
packet work, so its scalability declines with increases
in link speed. Flowtune schedules flowlets, so allocated
rates scale proportionally with the network links. The
benchmark results above show that on 40 Gbits/s links,
4 cores allocate 15.36 Tbit/s, and 64 cores allocate 184
Tbit/s on 64 cores in under 31 µs, 10.4× more throughput
per core on 8× more cores – an 83× throughput increase
over Fastpass.

5.3 ns-2 simulations

Model. All control traffic shares the network with data
traffic and experiences queuing and packet drops. Control
payloads are transmitted using TCP, and are only pro-
cessed after all payload bytes arrive at their destinations.
Topology. The topology is a two-tier full-bisection topol-
ogy with 4 spine switches connected to 9 racks of 16
servers each, where servers are connected with a 10
Gbits/s link. It is the same topology used in [4]. Links and
servers have 1.5 and 2 microsecond delays respectively,
for a total of 14 µs 2-hop RTT and 22 µs 4-hop RTT, com-
mensurate with measurements we conducted in a large
datacenter.
Workload. To model micro-bursts, flowlets follow a Pois-
son arrival process. Flowlet size distributions are accord-
ing to the Web, Cache, and Hadoop workloads published
by Facebook [34]. Appendix C has more information on
the CDFs used. The Poisson rate at which flows enter
the system is chosen to reach a specific average server
load, where 100% load is when the rate equals server link
capacity divided by the mean flow size. Unless other-
wise specified, experiments use the Web workload, which
has the highest rate of changes and hence stresses Flow-
tune the most among the three workloads. Sources and
destinations are chosen uniformly at random.
Servers. When opening a new connection, servers start a
regular TCP connection, and in parallel send a notification



to the allocator. Whenever a server receives a rate update
for a flow from the allocator, it opens the flow’s TCP
window and paces packets on that flow according to the
allocated rate.

Flowtune allocator. The allocator performs an iteration
every 10 µs. We found that for NED parameter γ in the
range [0.2,1.5], the network exhibits similar performance;
experiments have γ = 0.4.

Flowtune control connections. The allocator is con-
nected using a 40 Gbits/s link to each of the spine switches.
Allocator–server communication uses TCP with a 20 µs
minRTO and 30 µs maxRTO. Notifications of flowlet
start, end, and rate updates are encoded in 16, 4, and
6 bytes plus the standard TCP/IP overheads. Updates
to the allocator and servers are only applied when the
corresponding bytes arrive, as in ns2’s TcpApp.

5.3.1 Fast convergence

To show how fast the different schemes converge to a fair
allocation, we ran five senders and one receiver. Starting
with an empty network, every 10 ms one of the senders
would start a flow to the receiver. Thereafter, every 10 ms
one of the senders stops.

(D) Convergence comparison. Figure 8 shows the rates
of each of the flows as a function of time. Throughput
is computed at 100 µs intervals; smaller intervals make
very noisy results for most schemes. Flowtune achieves
an ideal sharing between flows: N flows each get 1/N of
bandwidth. This changes happens within one averaging
interval (100 µs). DCTCP takes several milliseconds to
approach the fair allocation, and even then traffic alloca-
tions fluctuate. pFabric doesn’t share fairly; it prioritizes
the flow with least remaining bytes and starves the other
flows. sfqCoDel reaches a fair allocation quickly, but
packet drops cause the application-observed throughput
to be extremely bursty: the application sometime receives
nothing for a while, then a large amount of data when
holes in the window are successfully received. XCP is
slow to allocate bandwidth, which results in low through-
puts during most of the experiment.

5.3.2 Rate-update traffic

Flowtune only changes allocations on flowlet start and
stop events, so when these events are relatively infrequent,
the allocator could send relatively few updates every sec-
ond. On the other hand, since the allocator optimizes
utility across the entire network, a change to a single flow
could potentially change the rates of all flows in the net-
work. This section explores how much traffic is generated
to and from the allocator.

The allocator notifies servers when the rates assigned
to flows change by a factor larger than a threshold. For

example, with a threshold of 0.01, a flow allocated 1
Gbit/s will only be notified when its rate changes to above
1.01 or below 0.99 Gbits/s. To make sure links are not
over-utilized, the allocator adjusts the available link capac-
ities by the threshold; with a 0.01 threshold, the allocator
would allocate 99% of link capacities.

(E) Amount of update traffic. Figure 9 shows the
amount of traffic sent to and from the allocator as a frac-
tion of total network capacity, with a notification threshold
of 0.01. The Web workload, which has the smallest mean
flow size, also incurs the most update traffic: 1.13% of
network capacity. At 0.8 load, the network will be 80%
utilized, with 20% unused, so update traffic is well below
the available headroom. Hadoop and Cache workloads
need even less update traffic: 0.17% and 0.57%. Scaling
the rate updates to large networks is discussed in §6.

Traffic from servers to the allocator is substantially
lower than from the allocator to servers: servers only
communicate flowlet arrival and departures, while the
allocator can potentially send many updates per flowlet.

(F) Reducing update traffic. Increasing the update
threshold reduces the volume of update traffic and the
processing required at servers. Figure 10 shows the mea-
sured reduction in update traffic for different thresholds
compared to the 0.01 threshold in Figure 9. Notifying
servers of changes of 0.05 or more of previous allocations
saves up to 69%, 64% and 33% of update traffic for the
Hadoop, Cache, and Web workloads.

(G) Effect of network size on update traffic. An ad-
dition or removal of a flow in one part of the network
potentially changes allocations on the entire network. As
the network grows, does update traffic also grow, or are
updates contained? Figure 11 shows that as the network
grows from 128 servers up to 2048 servers, update traffic
takes the same fraction of network capacity — there is
no debilitating cascading of updates that increases update
traffic. This result shows that the threshold is effective at
limiting the cascading of updates to the entire network.

5.3.3 Comparison to prior schemes

We compare Flowtune to DCTCP [2], pFabric [4],
XCP [26], and Cubic+sfqCoDel [32].

(H) 99th percentile FCT. For datacenters to provide
faster, more predictable service, tail latencies must be
controlled. Further, when a user request must gather re-
sults from tens or hundreds of servers, p99 server latency
quickly dominates user experience [11].

Figure 12 shows the improvement in 99th percentile
flow completion time achieved by switching from differ-
ent schemes to Flowtune. To summarize flows of different
lengths to the different size ranges (“1-10 packets”, etc.),
we normalize each flow’s completion time by the time



DCTCP Flowtune pFabric sfqCoDel XCP

0.0

2.5

5.0

7.5

10.0

0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75
Time (ms)

T
hr

ou
gh

pu
t (

G
bp

s)

Figure 8: Flowtune achieves a fair allocation within 100 µs of a new flow arriving or leaving. In the benchmark, every
10 ms a new flow is added up to 5 flows, then flows finish one by one. DCTCP approaches a fair allocation after several
milliseconds. pFabric, as designed, doesn’t share the network among flows. sfqCoDel gets a fair allocation quickly, but
retransmissions cause the application to observe bursty rates. XCP is conservative in handing out bandwidth and so
converges slowly.

From allocator To allocator

●
●

●

●

●

●

●

●

●
●

● ● ● ● ● ●

0.000

0.003

0.006

0.009

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Load

F
ra

ct
io

n 
of

 n
et

w
or

k 
ca

pa
ci

ty

workload

●

cache

hadoop

web

Figure 9: Overhead with Hadoop, cache, and Web work-
loads is < 0.17%, 0.57%, and 1.13% of network capacity.

cache hadoop web

0

20

40

60

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Load

%
 R

ed
uc

tio
n 

in
Tr

af
fic

 fr
om

 A
llo

ca
to

r

threshold

0.01

0.02

0.03

0.04

0.05

Figure 10: Notifying servers when rates change by more
than a threshold substantially cuts control traffic volume.

it would take to send out and receive all its bytes on an
empty network.

Flowtune preforms better than DCTCP on short flows:
8.6×-10.9× lower p99 FCT on 1-packet flows and 2.1×-
2.9× on 1-10 packet flows. This happens because DCTCP
has high p99 queuing delay, as shown in the next experi-
ment.

Overall, pFabric and Flowtune have comparable perfor-
mance, with Flowtune better on some flow sizes, pFabric
on others. Note, however, that Flowtune achieves this per-
formance without requiring any changes to networking
hardware. Flowtune achieves 1.7×-2.4× lower p99 FCT
on 1-packet flows, and up to 2.4× on large flows. pFabric
performs well on flows 1-100 packets long, with similar

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.000

0.005

0.010

128 256 512 1024 2048
# Servers

Tr
af

fic
 F

ro
m

 A
llo

ca
to

r
as

 F
ra

ct
io

n 
of

N
et

w
or

k 
C

ap
ac

ity

Load

●

●

●

0.4

0.6

0.8

Figure 11: The fraction of rate-update traffic remains
constant as the network grows from 128 to 2048 servers.

ratios. pFabric is designed to prioritize short flows, which
explains its performance.

sfqCoDel has comparable performance on large flows,
but is 3.5×-3.8× slower on 10-100 packets at high load
and 2.1×-2.4× slower on 100-1000 packet flows at low
load. This is due to sfqCoDel’s high packet loss rate. Cu-
bic handles most drops using SACKs, except at the end
of the flow, where drops cause timeouts. These timeouts
are most apparent in the medium-sized flows. XCP is con-
servative in allocating bandwidth (§5.3.1), which causes
flows to finish slowly.

(I) Queuing delay. The following experiments collected
queue lengths, drops, and throughput from each queue
every 1 ms. Figure 13 shows the 99th percentile queuing
delay on network paths, obtained by examining queue
lengths. This queuing delay has a major contribution to
1-packet and 1-10 packet flows. Flowtune has near-empty
queues, whereas DCTCP’s queues are 12× longer, con-
tributing to the significant speedup shown in Figure 12.
XCP’s conservative allocation causes its queues to remain
shorter. pFabric and sfqCoDel maintain relatively long
queues, but the comparison is not apples-to-apples be-
cause packets do not traverse their queues in FIFO order.

(J) Packet drops. Figure 14 shows the rate at which the
network drops data, in Gigabits per second. At 0.8 load,



DCTCP pFabric sfqCoDel XCP

0
1
2
3
4
5
6
7
8
9

10

0

1

2

0

1

2

3

0

1

2

3

4

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Load

S
pe

ed
up

 o
f U

si
ng

 F
lo

w
tu

ne

1 packet 1−10 packets 10−100 packets 100−1000 packets large

Figure 12: Improvement in 99th percentile flow completion time with Flowtune. Note the different scales of the y axis.

2 hops 4 hops

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0

25

50

75

100

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Load

P
99

 Q
ue

ui
ng

 D
el

ay
 (

us
)

● DCTCP

Flowtune

XCP

Figure 13: Flowtune keeps 2-hop and 4-hop 99th-
percentile queuing delays below 8.9 µs. At 0.8 load, XCP
has 3.5× longer queues, DCTCP 12×. pFabric and sfq-
Codel do not maintain FIFO ordering so their p99 queuing
delay could not be inferred from sampled queue lengths.

● ● ● ● ● ● ● ●0

25

50

75

100

0.2 0.4 0.6 0.8
Load

D
ro

pp
ed

 D
at

a
P

er
 S

ec
on

d 
(G

bp
s)

● DCTCP

Flowtune

pFabric

sfqCoDel

XCP

Figure 14: pFabric and sfqCoDel have a significant drop
rate (1-in-13 for sfqCoDel). Flowtune, DCTCP, and XCP
drop negligible amounts.

sfqCoDel servers transmit at 1279 Gbits/s (not shown),
and the network drops over 100 Gbits/s, close to 8%.
These drops in themselves are not harmful, but timeouts
due to these drops could result in high p99 FCT, which
affects medium-sized flows (figure 12). Further, in a
datacenter deployment of sfqCoDel, servers would spend
many CPU cycles in slow-path retransmission code. pFab-
ric’s high drop rate would also make it prone to higher
server CPU usage, but its probing and retransmission
schemes mitigate high p99 FCT. Flowtune, DCTCP, and
XCP drop negligible amounts.

●

●

●

●
●

●
●

●

−1.5

−1.0

−0.5

0.0

0.2 0.4 0.6 0.8
Load

P
er

 F
lo

w
 F

ai
rn

es
s

R
el

at
iv

e 
to

 F
lo

w
tu

ne

● DCTCP

pFabric

sfqCoDel

XCP

Figure 15: Comparison of proportional fairness of differ-
ent schemes, i.e., ∑ log2(rate). Flowtune allocates flows
closer to their proportional-fair share.

(K) Fairness. Figure 15 shows the proportional-fairness
per-flow score of the different schemes normalized to
Flowtune’s score. A network where flows are assigned
rates ri gets score ∑i log2(ri). This translates to gaining
a point when a flow gets 2× higher rate, losing a point
when a flow gets 2× lower rate. Flowtune has better
fairness than the compared schemes: a flow’s fairness
score has on average 1.0-1.9 points more in Flowtune
than DCTCP, 0.45-0.83 than pFabric, 1.3 than XCP, and
0.25 than CoDel.

5.4 Numerical simulations

Experiments in this section compared different NUM
optimizers using numerical simulations. Simulations ran
the web flow size distribution described in §5.3.

(L) Over-allocation in NUM. Figure 16 shows the to-
tal amount of over-capacity allocations when there is
no normalization. FGM is the Fast Weighted Gradient
Method [7]. The -RT variants are optimized implemen-
tations which use single-point floating point operations
and some numeric approximations for speed. NED over-
allocates more than Gradient because it is more aggressive
at adjusting prices when flowlets arrive and leave. FGM
does not handle the stream of updates well, and its alloca-
tions become unrealistic at even moderate loads.



0

50

100

150

200

0.25 0.50 0.75
load

ov
er

−
al

lo
ca

tio
n 

(G
bp

s) algorithm
FGM

Gradient

Gradient−RT

NED

NED−RT

Figure 16: Normalization is necessary; without it, opti-
mization algorithms allocate more than link capacities.

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75
load

T
hr

ou
gh

pu
t

(f
ra

ct
io

n 
of

 o
pt

im
al

) algorithm

Gradient

NED

metric

F−NORM

U−NORM

Figure 17: Normalizing with F-NORM achieves close to
optimal throughput, while avoiding over-capacity alloca-
tions. U-NORM’s throughput is low in comparison.

(M) Normalizer performance. We ran Gradient and
NED on the same workload and recorded their throughput.
After each iteration, we ran a separate instance of NED
until it converged to the optimal allocation. Figure 17
shows U-NORM and F-NORM throughputs as a fraction
of the optimal. F-NORM scales each flow based on the
over-capacity allocations of links it traverses, achieving
over 99.7% of optimal throughput with NED (98.4% with
Gradient). In contrast, U-NORM scales flow throughput
too aggressively, hurting overall performance. Gradient
suffers less from U-NORM’s scaling, because it adjusts
rates slowly and does not over-allocate as much as NED.
Note that NED with F-NORM allocations occasionally
slightly exceed the optimal allocation, but not the link
capacities. Rather, the allocation gets more throughput
than the optimal at the cost of being a little unfair to some
flows.

6 Discussion

Fault-tolerance: In Flowtune, the allocated rates have a
temporary lifespan, and new allocated rates must arrive
every few tens of microseconds. If the allocator fails,
the rates expire and endpoint congestion control (e.g.,
TCP) takes over, using the previously allocated rates as a
starting point.

This is a more attractive plan than in Fastpass. When
the Fastpass arbiter fails, the network has no idea who

should transmit next. Falling back to TCP requires the
endpoints to go through slow-start before finding a good
allocation. In Flowtune, the network continues to operate
with close-to-optimal rates during allocator fail-over.

Path discovery: The allocator knows each flow’s path
through the network. Routing information can be com-
puted from the network state: in ECMP-based networks,
given the ECMP hash function and switch failure notifica-
tions; in SDN-based networks, given controller decisions;
and in MPLS-based [14] networks, given the MPLS con-
figuration stream. In VL2 [18]-like networks where end-
points tunnel packets to a core switch for forwarding to
the destination, and in static-routed network where end-
points have multiple subnets for different paths and the
choice of subnet dictates a packet’s path, endpoints can
send chosen routes to the allocator.

Using Flowtune with TCP: In some settings, it is advan-
tageous to use Flowtune to rate-limit traffic, while still
using TCP. One such setting is when path information
is not available. Flowtune can model the network as the
servers connected to one big switch. Then, Flowtune
would manages rates on the edge links between servers
and the top-of-rack switches, while TCP congestion con-
trol would handle contention in the core of the network.

Flow startup; mice and elephants: When using Flow-
tune with TCP, the system can allow servers to start trans-
mitting their flowlets before an allocation has arrived; the
allocator would reserve a small fraction of link capacity to
accomodate these flows. This allows short mice flows to
finish quickly, without paying for the RTT to the allocator,
and simplifies fault tolerance: upon allocator failure, the
endpoints automatically use TCP on new flowlets without
incurring timeouts.

Handling network failure: When links and switches fail,
the network re-routes flows via alternate paths. For ex-
ample, ECMP would hash flows onto the set of available
links. Re-routing flows without notifying the allocator
can cause queuing and packet loss on their new paths,
since the allocator computes flow rates according to their
old paths.

When timely notifications of re-routing events are not
possible, the system can run traffic over TCP as dis-
cussed above. While re-routing information is not avail-
able, TCP gracefully handles over-allocations. An alter-
native is detecting failure using an external system like
Pingmesh [19], and then triggering path re-discovery or
re-routing for affected flows. While correct path infor-
mation is being obtained, the allocator can mitigate link
over-allocation by zeroing the capacity of failed links.

External traffic: Most datacenters do not run in isolation;
they communicate with other datacenters and users on the
Internet. A Flowtune cluster must be able to accept flows
that are not scheduled by the allocator. As in Fastpass,



Flowtune could prioritize or separately schedule external
traffic, or adopt a different approach. With NED, it is
straightforward to dynamically adjust link capacities or
add dummy flows for external traffic; a “closed loop”
version of the allocator would gather network feedback
observed by endpoints, and adjust its operation based on
this feedback. The challenge here is what feedback to
gather, and how to react to it in a way that provides some
guarantees on the external traffic performance.

Scaling to larger networks: Although the allocator
scales to multiple servers, the current implementation
is limited to two-tier topologies. Beyond a few thou-
sand endpoints, some networks add a third tier of spine
switches to their topology that connects two-tier pods. As-
signing a full pod to one block would create huge blocks,
limiting allocator parallelism. On the other hand, the
links going into and out of a pod are used by all servers
in a pod, so splitting a pod to multiple blocks creates
expensive updates. An open question is whether the Flow-
Block/LinkBlock abstraction can generalize to 3-tier Clos
networks, or if a new method is needed.

Another approach to scaling would be running a seper-
ate Flowtune allocator per pod, each controller treating
incoming inter-pod traffic as external traffic (as discussed
above). This would allow each pod to optimize its objec-
tive function on its egress inter-pod flows, but the network
will not be able to globally optimize inter-pod traffic.

More scalable rate update schemes: Experiments in
§5.3.2 show that rate updates have a throughput overhead
of 1.12% at 0.8 load, so each allocator NIC can update 89
servers. Note that 0.8 load is on the extreme high end in
some datacenters: one study reports 99% of links are less
than 10% loaded, and heavily-loaded links utilize roughly
5× the lightly loaded ones [34]. Lower load translates
directly to reduced update traffic (Figure 9).

In small deployments of a few hundred endpoints, it
might be feasible to install a few NICs in the allocator.
Figure 10 shows how increasing the update threshold
reduces update traffic, which can help scale a little further,
but as deployments grow to thousands of endpoints, even
the reduced updates can overwhelm allocator NICs.

Sending tiny rate updates of a few bytes has huge over-
head: Ethernet has 64-byte minimum frames and pream-
ble and interframe gaps, which cost 84-bytes, even if only
eight byte rate updates are sent. A straightforward so-
lution to scale the allocator 10× would be to employ a
group of intermediary servers that handle communication
to a subset of individual endpoints. The allocator would
send an MTU to each intermediary with all updates to the
intermediary’s endpoints. The intermediary would in turn
forward rate updates to each endpoint.

Hypervisors: A Flowtune endpoint needs to send flowlet
start/stop notifications to the allocator, and rate-limit flows

based on received allocations. A hypervisor can accom-
plish this without VM support by interposing itself on
VM network I/O (e.g., using a vSwitch), maintaining per-
flow queues, and scheduling outgoing packets. However,
this approach precludes direct VM access to NIC queues
(e.g., using SR-IOV) and its associated performance ad-
vantages. A potential direction could be adding hardware
support for flow notification and pacing to NICs.

Detecting flowlets: Detection of when flowlets start and
end can be done in the operating system, in the hypervisor
(as discussed above), in a network appliance/switch (simi-
lar to a hypervisor implementation), or in some implemen-
tations the applications could participate in Flowtune di-
rectly. With OS and application flowlet detection, flowlets
are clearly delineated by different send() socket calls,
and timers are not required to detect a flowlet’s end. This
accurate detection is more economical to the system, since
a rate is not allocated in vain to an empty flowlet while
waiting for its timer to expire. Moreover, knowing the ex-
act flowlet size allows the OS and applications to provide
the allocator with advance notification of flowlet endings,
further reducing wasted allocations.

When a new send() socket call arrives in the middle
of a flowlet, an implementation can choose to coalesce the
new data into the existing flowlet, and notify the allocator
only when all data has finished. This is beneficial when
the utility function is the same for both socket calls: the
allocator will output the same rate if there are two back-
to-back flowlets or one large flowlet, and coalescing helps
reduce communication overhead.

7 Related work

Rate allocation. NUMFabric [31] also uses NUM to as-
sign network rates, however switches must be modified
to support its xWI protocol. Unlike Flowtune, it is dis-
tributed, so an iteration time is coupled with network RTT
and the system cannot apply global normalization to make
all traffic admissible.

Several systems control datacenter routes and rates, but
are geared for inter-datacenter traffic. BwE [28] groups
flows hierarchically and assigns a max-min fair allocation
at each level of the hierarchy every 5-10 seconds on WAN
links (similar time-scale to B4 [25]), and SWAN [23] re-
ceives demands from non-interactive services, computes
rates, and reconfigures OpenFlow switches every 5 min-
utes. Flowtune supports a richer set of utility functions,
with orders of magnitude smaller update times.

Hedera [1] gathers switch statistics to find elephant
flows and reroutes those to avoid network hotspots. It is
complementary to Flowtune: integrating the two systems
can give Hedera its required information with very low
latency. Mordia [15] and Datacenter TDMA [40] com-
pute matchings between sources and destinations using



gathered statistics, and at any given time, only flows of a
single matching can send. While matchings are changed
relatively frequently, the set of matchings is updated in-
frequently (seconds). In contrast, Flowtune updates allo-
cations within tens of microseconds.

NED. The first-order methods [27, 29, 37] do not estimate
H`` or use crude proxies. Gradient projection [29] adjusts
prices with no weighting. Fast Weighted Gradient [7]
uses a crude upper bound on the convexity of the utility
function as a proxy for H``.

The Newton-like method [6], like NED, strives to use
H`` to normalize price updates, but it uses network mea-
surements to estimate its value. These measurements
increase convergence time and have associated error; we
have found the algorithm is unstable in several settings.
Flowtune, in contrast, computes H`` explicitly from flow
utilities, saving the time required to obtain estimates, and
getting an error-free result. Appendix B discusses the Gra-
dient, Newton and Newton-like methods in more detail.

Recent work [41] has a different formulation of the
problem, with equality constraints rather than inequalities.
While the scheme holds promise for faster convergence,
iterations are much more involved and hence slower to
compute, making the improvement questionable. Accel-
erated Dual Descent [43] does not use the flow model: it
doesn’t care what destination data arrives at, only that all
data arrives at some destination. However, the method
is notable for updating a link’s price p` based not only
on the link’s current and desired throughput, but also on
how price changes to other links pk affect it. Adapting
the method to the flow setting could reduce the number
of required iterations to convergence (again at the cost of
perhaps increasing iteration runtime).

8 Conclusion

This paper made the case for flowlet control for datacenter
networks. We developed Flowtune using this idea and
demonstrated that it converges to an optimal allocation
of rates within a few packet-times, rather than several
RTTs. Our experiments show that Flowtune outperforms
DCTCP, pFabric, Cubic-over-sfqCoDel, and XCP in var-
ious datacenter settings; for example, it achieves 8.6×-
10.9× and 2.1×-2.9× lower p99 FCT for 1-packet and
1-10 packet flows compared to DCTCP.

Compared to Fastpass, Flowtune scales to 8× more
cores and achieves 10.4× higher throughput per core,
does not require allocator replication for fault-tolerance,
and achieves weighted proportional-fair rate allocations
quickly in between 8.29 µs and 30.71 µs (≤2 RTTs) for
networks that have between 384 and 4608 nodes.

Acknowledgements

We thank Omar Baldonado, Chuck Thacker, Prabhakaran
Ganesan, Songqiao Su, Kirtesh Patil, Petr Lapukhov,
Neda Beheshti, Mohana Prasad, Mohammad Alizadeh,
James Zeng, Sandeep Hebbani, Jasmeet Bagga, Dinesh
Bharadia, Chris Davies, and Doug Weimer for helpful
discussions. We are grateful for Facebook’s support of
Perry through a Facebook Fellowship. Balakrishnan was
supported in part by NSF grants 1526791 and 1407470,
and Shah by NSF grant 1523546. We thank the industrial
members of the MIT Center for Wireless Networks and
Mobile Computing for their support and encouragement.

A Why price duality works

The utility function Us for each s ∈ S is a strictly concave
function and hence the overall objective ∑s Us in (2) is
strictly concave. The constraints in (2) are linear. The
capacity of each link is strictly positive and finite. Each
flow passes through at least one link, i.e. L(s) 6= /0 for
each s ∈ S. Therefore, the set of feasible solutions for (2)
is non-empty, bounded and convex. The Lagrangian of
(2) is

L (x,p) = ∑
s∈S

Us(xs)−∑
`∈L

p`
(

∑
s∈S(`)

xs− c`
)
. (7)

with dual variables p`, and the dual function is defined as

D(p) = max L (x,p) over xs ≥ 0, for all s ∈ S. (8)

The dual optimization problem is given by

min D(p) over p` ≥ 0, for all ` ∈ L. (9)

From Slater’s condition in classical optimization theory,
the utility of the solution of (2) is equal to its Lagrangian
dual’s (9), and given the optimal solution p? of (9) it is
possible to find the optimal solution for (2) from (8), i.e.,
using the rate update step. More details on solving NUM
using Lagrange multipliers appear in [27, 6].

B Related NUM algorithms

This appendix surveys three related NUM algorithms.
Gradient. Arguably the simplest algorithm for adjusting
prices is Gradient projection [29], which adjusts prices
directly from the amount of over-allocation:

p`← p`+ γ G`.

Gradient’s shortcoming is that it doesn’t know how sensi-
tive flows are to a price change, so it must update prices
very gently (i.e., γ must be small). This is because de-
pending on flow utility functions, large price updates



0.00

0.25

0.50

0.75

1.00

103 105 107 109

bytes

C
D

F cache

hadoop

web

Figure 18: CDF of flow size distributions (reproduced
from [34]) used in §5.

might cause flows to react very strongly and change rates
dramatically, causing oscillations in rates and failure to
converge. This results in very timid price updates that
make Gradient slow to converge.
Newton’s method. Unlike the gradient method, New-
ton’s method takes into account second-order effects of
price updates. It adjusts the price on link ` based not only
on how flows on ` will react, but also based on how price
changes to all other links impact flows on `:

p← p− γ G H−1,

where H is the Hessian matrix. This holistic price update
makes Newton’s method converge quickly, but also makes
computing new prices expensive: inverting the Hessian on
CPUs is impractical within Flowtune’s time constraints.
The Newton-like method. An approximation to the New-
ton method was proposed in [6]. The Newton-like method
estimates how sensitive flows are to price changes, by ob-
serving how price changes impact network throughput.
Prices are then updated accordingly: inversely propor-
tional to the estimate of price-sensitivity. The drawback is
that network throughput must be averaged over relatively
large time intervals, so estimating the diagonal is slow.

C Simulation CDFs

This section reproduces the flow size distribution graphs
from [34], for completeness. Data from the paper has
been open-sourced in the “Facebook Network Analytics
Data Sharing” Facebook group. The distributions are
based on the “all” category from the original publication.

Figure 18 shows the flow size CDF. Table 1 summarizes
statistics of the different workloads.

References
[1] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,

HUANG, N., AND VAHDAT, A. Hedera: Dynamic Flow Schedul-
ing for Data Center Networks. In NSDI (2010).

[2] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J.,
PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN,
M. Data Center TCP (DCTCP). In SIGCOMM (2010).

Metric cache hadoop web
mean 567658.4 1296082.4 33105.3

median 22924 651 1419
p90 2432831 117471 55179
p95 2716140 266706 208966
p99 3131038 6405830 417147

p999 5663439 251359175 2560769

Table 1: Statistics of the different flow size distributions
(bytes).

[3] ALIZADEH, M., KABBANI, A., EDSALL, T., PRABHAKAR, B.,
VAHDAT, A., AND YASUDA, M. Less is More: Trading a Little
Bandwidth for Ultra-Low Latency in the Data Center. In NSDI
(2012).

[4] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN,
N., PRABHAKAR, B., AND SHENKER, S. pFabric: Minimal near-
optimal datacenter transport. In SIGCOMM (2013).

[5] ANDREYEV, A. Introducing data center fabric, the next-generation
Facebook data center network.

[6] ATHURALIYA, S., AND LOW, S. H. Optimization Flow Control
with Newton-like Algorithm. Telecommunication Systems 15, 3-4
(2000), 345–358.

[7] BECK, A., NEDIC, A., OZDAGLAR, A., AND TEBOULLE, M.
A Gradient Method for Network Resource Allocation Problems.
IEEE Trans. on Control of Network Systems 1, 1 (2014), 64–73.

[8] BRAKMO, L. S., O’MALLEY, S. W., AND PETERSON, L. L.
TCP Vegas: New Techniques for Congestion Detection and Avoid-
ance. In SIGCOMM (1994).

[9] CHEN, Y., ALSPAUGH, S., AND KATZ, R. H. Design insights
for mapreduce from diverse production workloads. In Tech. Rep.
EECS-2012-17 (2012), UC Berkeley.

[10] CHOWDHURY, M., ZHONG, Y., AND STOICA, I. Efficient coflow
scheduling with varys. In SIGCOMM (2014).

[11] DEAN, J., AND BARROSO, L. A. The tail at scale. Comm. of the
ACM (2013).

[12] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and Sim-
ulations of a Fair-Queueing Algorithm. Internetworking: Research
and Experience V, 17 (1990), 3–26.

[13] DONG, M., LI, Q., ZARCHY, D., GODFREY, P. B., AND
SCHAPIRA, M. PCC: Re-architecting Congestion Control for
Consistent High Performance. In NSDI (2015).

[14] ELWALID, A., JIN, C., LOW, S., AND WIDJAJA, I. MATE:
MPLS Adaptive Traffic Engineering. In INFOCOM (2001).

[15] FARRINGTON, N., PORTER, G., FAINMAN, Y., PAPEN, G., AND
VAHDAT, A. Hunting Mice with Microsecond Circuit Switches.
In HotNets (2012).

[16] FLOYD, S. TCP and Explicit Congestion Notification. CCR 24, 5
(Oct. 1994).

[17] FLOYD, S., AND JACOBSON, V. Random Early Detection Gate-
ways for Congestion Avoidance. IEEE ACM Trans. on Net. 1, 4
(Aug. 1993).



[18] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,
KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-
GUPTA, S. VL2: A Scalable and Flexible Data Center Network.
In SIGCOMM (2009).

[19] GUO, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R.,
MALTZ, D., LIU, Z., WANG, V., PANG, B., CHEN, H., ET AL.
Pingmesh: A large-scale system for data center network latency
measurement and analysis. SIGCOMM (2015).

[20] HA, S., RHEE, I., AND XU, L. CUBIC: A new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating Systems Review
42, 5 (2008), 64–74.

[21] HOE, J. C. Improving the start-up behavior of a congestion control
scheme for tcp. In SIGCOMM (1996).

[22] HONG, C. Y., CAESAR, M., AND GODFREY, P. Finishing Flows
Quickly with Preemptive Scheduling. In SIGCOMM (2012).

[23] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG, M.,
GILL, V., NANDURI, M., AND WATTENHOFER, R. Achiev-
ing High Utilization with Software-Driven WAN. In SIGCOMM
(2013).

[24] JACOBSON, V. Congestion Avoidance and Control. In SIGCOMM
(1988).

[25] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI, L.,
SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J., ZHU, M.,
ZOLLA, J., HÖLZLE, U., STUART, S., AND VAHDAT, A. B4:
Experience with a Globally-deployed Software Defined Wan. In
SIGCOMM (2013).

[26] KATABI, D., HANDLEY, M., AND ROHRS, C. Congestion Con-
trol for High Bandwidth-Delay Product Networks. In SIGCOMM
(2002).

[27] KELLY, F. P., MAULLOO, A. K., AND TAN, D. K. Rate Control
for Communication Networks: Shadow prices, Proportional Fair-
ness and Stability. Journal of the Operational Research Society
(1998), 237–252.

[28] KUMAR, A., JAIN, S., NAIK, U., RAGHURAMAN, A., KASI-
NADHUNI, N., ZERMENO, E. C., GUNN, C. S., AI, J., CARLIN,
B., AMARANDEI-STAVILA, M., ROBIN, M., SIGANPORIA, A.,
STUART, S., AND VAHDAT, A. Bwe: Flexible, hierarchical band-
width allocation for wan distributed computing. In SIGCOMM
(2015).

[29] LOW, S. H., AND LAPSLEY, D. E. Optimization Flow Control–I:
Basic Algorithm and Convergence. IEEE/ACM Trans. on Net-
working 7, 6 (1999), 861–874.

[30] MITTAL, R., DUKKIPATI, N., BLEM, E., WASSEL, H.,
GHOBADI, M., VAHDAT, A., WANG, Y., WETHERALL, D.,
ZATS, D., ET AL. TIMELY: RTT-based congestion control for the
datacenter. In SIGCOMM (2015).

[31] NAGARAJ, K., BHARADIA, D., MAO, H., CHINCHALI, S., AL-
IZADEH, M., AND KATTI, S. NUMFabric: Fast and Flexible
Bandwidth Allocation in Datacenters. In SIGCOMM (2016).

[32] NICHOLS, K., AND JACOBSON, V. Controlling queue delay.
Communications of the ACM 55, 7 (2012), 42–50.

[33] PERRY, J., OUSTERHOUT, A., BALAKRISHNAN, H., SHAH, D.,
AND FUGAL, H. Fastpass: A centralized "zero-queue" datacenter
network. In SIGCOMM (2014).

[34] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN,
A. C. Inside the social network’s (datacenter) network. In SIG-
COMM (2015).

[35] SHREEDHAR, M., AND VARGHESE, G. Efficient Fair Queueing
Using Deficit Round Robin. In SIGCOMM (1995).

[36] SINGH, A., ONG, J., AGARWAL, A., ANDERSON, G., ARMIS-
TEAD, A., BANNON, R., BOVING, S., DESAI, G., FELDERMAN,
B., GERMANO, P., KANAGALA, A., PROVOST, J., SIMMONS,
J., TANDA, E., WANDERER, J., HÖLZLE, U., STUART, S., AND
VAHDAT, A. Jupiter rising: A decade of clos topologies and cen-
tralized control in google’s datacenter network. In SIGCOMM
(2015).

[37] SRIKANT, R. The mathematics of Internet congestion control.
Springer Science & Business Media, 2012.

[38] TAI, C., ZHU, J., AND DUKKIPATI, N. Making Large Scale
Deployment of RCP Practical for Real Networks. In INFOCOM
(2008).

[39] TAN, K., SONG, J., ZHANG, Q., AND SRIDHARAN, M. A com-
pound TCP approach for high-speed and long distance networks.
In INFOCOM (2006).

[40] VATTIKONDA, B. C., PORTER, G., VAHDAT, A., AND SNOEREN,
A. C. Practical TDMA for Datacenter Ethernet. In EuroSys
(2012).

[41] WEI, E., OZDAGLAR, A., AND JADBABAIE, A. A Distributed
Newton Method for Network Utility Maximization–I: Algorithm.
IEEE Trans. on Automatic Control 58, 9 (2013), 2162–2175.

[42] WINSTEIN, K., SIVARAMAN, A., AND BALAKRISHNAN, H.
Stochastic Forecasts Achieve High Throughput and Low Delay
over Cellular Networks. In NSDI (2013).

[43] ZARGHAM, M., RIBEIRO, A., OZDAGLAR, A., AND JAD-
BABAIE, A. Accelerated dual descent for network flow optimiza-
tion. IEEE Trans. on Automatic Control 59, 4 (2014), 905–920.


	Introduction
	Rate Allocation in Flowtune
	Intuition
	The NUM framework
	The NED algorithm

	Rate normalization
	Scalability
	Evaluation
	Amazon EC2 deployment
	Multicore micro-benchmarks
	ns-2 simulations
	Fast convergence
	Rate-update traffic
	Comparison to prior schemes

	Numerical simulations

	Discussion
	Related work
	Conclusion
	Why price duality works
	Related NUM algorithms
	Simulation CDFs

