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ABSTRACT
Despite many years of work in wireless mesh networks built using
802.11 radios, the performance and behavior of these networks in
the wild is not well-understood. This lack of understanding is due
in part to the lack of access to data from a wide range of these net-
works; most researchers have access to only one or two testbeds
at any time. In recent years, however, 802.11 mesh networks net-
works have been deployed commercially and have real users who
use the networks in a wide range of conditions. This paper analyzes
data collected from 1407 access points in 110 different commer-
cially deployed Meraki [28] wireless mesh networks, constituting
perhaps the largest study of real-world 802.11 networks to date.

After analyzing a 24-hour snapshot of data collected from these
networks, we answer questions from a variety of active research
topics, such as the accuracy of SNR-based bit rate adaptation, the
impact of opportunistic routing, and the prevalence of hidden ter-
minals. The size and diversity of our data set allows us to analyze
claims previously only made in small-scale studies. In particular,
we find that the SNR of a link is a good indicator of the optimal
bit rate for that link, but that one could not make an SNR-to-bit
rate look-up table that was accurate for an entire network. We also
find that an ideal opportunistic routing protocol provides little to no
benefit on most paths, and that “hidden triples”—network topolo-
gies that can lead to hidden terminals—are more common than sug-
gested in previous work, and increase in proportion as the bit rate
increases.
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1. INTRODUCTION
Despite the popularity of 802.11 networks, very little has been

published about their performance in production settings. One of
the main challenges has been the lack of a network provider with
a large and diverse footprint, who has taken the care to provide a
significant amount of instrumentation and logging. The data set
analyzed in this paper (discussed in detail in Section 3) includes
measurements collected from 110 different production Meraki [28]
wireless mesh networks located around the world (see Figure 1).
These networks are used by real clients; they are not testbeds, and
do not suffer from researchers setting up the nodes in particular
ways, inadvertently introducing biases. It is an “in situ” study, and
as such, it is larger in scale and diversity than any previous study of
which we are aware.

Although there are many interesting topics worthy of investiga-
tion, we study three that have seen a great deal of activity in recent
years: bit rate adaptation protocols [4, 21, 38], opportunistic mesh
network routing protocols [7, 9], and MAC protocols to cope with
hidden terminals [17]. We investigate the following questions, with
the intent of utilizing our data set to answer them on a larger scale
than previous work.

1. How does the optimal bit rate depend on the SNR across a
range of networks? A good bit rate adaptation scheme is
the most significant contributor to high throughput in 802.11
networks. Because the APs in our data set are stationary,
one might expect the SNR to be a good determinant of the
optimal bit rate. If that were the case, one could streamline
bit rate adaptation within the mesh by either eliminating the
need for probing to find the best bit rate, or using the SNR
to determine the bit rates that are most likely to be the best
and only probing this set. Limiting the number of probes
would be particularly beneficial for 802.11n, which has sev-
eral dozen bit rate configurations.

Indeed, results from small testbeds have indicated that the
SNR can be used effectively in bit rate adaptation [10, 13, 18,
21, 33, 39]. We seek to confirm this finding on a larger scale,
as well as to determine how specific the training environment
needs to be. For example, is the SNR-to-best-bit-rate map-
ping the same for an entire network, or must we train on each
link individually?

2. How well are opportunistic routing schemes likely to work in
practice? What benefit would they observe over traditional
single-path routing using the expected number of transmis-
sions [12] or expected transmission time [6] metrics? Op-
portunistic routing has been shown to be beneficial on certain
topologies [7, 9], but how often do such configurations arise
in production deployments?



Figure 1: Approximate locations of networks in our data set
(some are co-located). This data set exhibits more geographic
diversity than any previous study of which we are aware.

3. How common are hidden triples—topologies that can lead to
hidden terminals—in these diverse real-world deployments?
Interference caused by hidden terminals can affect even an
ideal rate adaptation protocol, however previous studies have
not provided conclusive answers as to how frequently hidden
terminals occur. For instance, [11], [17], [23], [25], and [29],
report proportions of hidden terminals ranging from 10% to
50% in a particular testbed or network. The disagreements
among these previous studies suggest that the prevalence of
hidden terminals depends heavily on the relative positions of
the nodes and the peculiarities of each network. We mea-
sure how much variation there is in the proportion of hidden
triples across different topologies and how it changes with
the transmit bit rate.

After analyzing a 24-hour snapshot of data from 1407 APs in
110 networks, our main findings are as follows:

1. When trained on a particular link in a static setting, the SNR
is a very good indicator of the optimal bit rate for 802.11b/g
and a surprisingly good indicator for 802.11n, given the num-
ber of bit rates present. For 802.11b/g networks, we find that
when trained on each link, the SNR can frequently predict
the best bit rate over 95% of the time. In 802.11n, we find
that a trained look-up table keyed by SNR, while not perfect,
can substantially reduce the number of bit rates that need to
be probed. However, in both 802.11b/g and 802.11n, using
other links in the network to train provides little benefit, in-
dicating that it would not be possible to build one SNR-to-
bit-rate look-up table that worked well for an entire network.

2. Analyzing all networks with at least five access points, we
find that the expected number of transmissions incurred by an
idealized opportunistic routing protocol (such as ExOR [7] or
MORE [9] without overheads) would be rather small, even
if an almost-perfect bit rate adaptation algorithm were used:
there is no improvement for at least 13% of node pairs, and
the median improvement is frequently less than 7%.

3. The prevalence of hidden triples—topologies where nodes A
and B cannot hear each other, but node C can hear both of
them—depends on the bit rate. At the lowest bit rate of 1
Mbit/s, and thresholding on a very low success probability
of 10% (i.e., considering two nodes to be neighbors if they
can hear each other at least 10% of the time), we find that the
median number of hidden triples is over 13%. Hidden triples
occur with far greater frequency at higher bit rates.

We also find that, as the bit rates increase, the probability
of nodes hearing each other decreases. This result is hardly

surprising, but what is noteworthy is that there is a high vari-
ance: the mean number of nodes that can hear each other
reduces, but the standard deviation is large. This variance im-
plies that there are node pairs that are able to hear each other
at a higher bit rate but not at a lower one at around the same
time, most likely because of differences in modulation and
coding (e.g., spread spectrum vs. OFDM). As a result, one
cannot always conclude that higher bit rates have poorer re-
ception properties than lower ones under similar conditions.

The rest of this paper is organized as follows. After discussing
related work in the next section, we describe the relevant features
of our data set in Section 3. Section 4 analyzes the performance of
various bit rates and how it relates to SNR, Section 5 discusses the
performance of opportunistic routing vs. traditional routing, and
Section 6 analyzes the frequency of hidden triples. We conclude in
Section 7.

2. RELATED WORK
We break related work into four sections. First, we discuss gen-

eral wireless measurement studies. Then we address each of the
topics of our study—SNR-based bit rate adaptation, opportunistic
routing, and hidden terminals—in turn.

2.1 Wireless Measurement Studies
Unlike this paper, most previous measurement studies focus on

results from single testbeds in fairly specific locations, such as uni-
versities or corporate campuses. For example, Jigsaw [11] studies
a campus network with 39 APs. Their focus is merging traces of
packet-level data. As such, they are able to calculate packet-level
statistics that we cannot, but must employ complicated merging
techniques. [14], [15], and [37] also deal with packet-level char-
acteristics, again for only one network.

Henderson and Kotz [19] study the use of a campus network with
over 550 APs and 7000 users. They focus on what types of devices
are most prevalent on the network and the types of data being trans-
ferred. Though they have a fairly large testbed, they cannot capture
inter-network diversity. Other campus studies address questions of
traffic load [20, 34] and mobility [27, 35].

Other wireless measurement papers focus on single testbeds in
more diverse locations. Rodrig et al. measure wireless in a hotspot
setting [31]. They study overhead, retransmissions, and the dynam-
ics of bit rate adaptation in 802.11b/g. [2] studies user behavior and
network performance in a conference setting, as does [22].

Though the aforementioned studies make important contribu-
tions toward understanding the behavior of wireless networks, they
are all limited by the scope of their testbeds. It is not possible to
determine which characteristics of 802.11 are invariant across net-
works with access to only one network. Our data set, however,
gives us this capability.

2.2 SNR-based Bit Rate Adaptation
Most bit rate adaptation algorithms can be divided into two

types: those that adapt based on loss rates from probes, and those
that adapt based on a estimate of channel quality. In algorithms
in the first category, for example SampleRate [4], nodes send oc-
casional probes at different bit rates, and switch to the rate that
provides the highest throughput (throughput being a function of
the loss rate and the bit rate). Algorithms in the second category
measure the channel quality in some way (e.g., by sampling the
SNR), and react based on the results of this measurement. In gen-
eral, poor channel quality results in decreasing the bit rate, and vice
versa. Here we take a closer look at studies which use the SNR as



an estimate of channel quality in adaptation algorithms, as this is
the approach we examine in Section 4.

SGRA [39] uses estimates of the SNR on a link to calculate
thresholds for each bit rate, which define the range of SNRs for
which a particular bit rate will work well. The authors find that
the SNR can overestimate channel quality in the presence of inter-
ference. RBAR [21] uses the SNR to derive thresholds, similar to
SGRA. Here, however, it is the SNR at the receiver that is used to
determine these thresholds. The receiver’s desired rate is commu-
nicated via RTS/CTS packets. RBAR also depends on a theoretical
estimate of the BER to select a bit rate. Although using the SNR
at the receiver is likely more accurate than using the SNR at the
sender, this scheme incurs relatively high overhead. OAR [33] is
similar to RBAR in the way in which it uses the SNR, but it main-
tains the temporal fairness of 802.11. Other threshold-based SNR
schemes include [10], [13], and [18].

Though all of these schemes report positive results from SNR-
based rate adaptation, they are all evaluated on research testbeds or
in simulation. None of them have been validated on real networks,
much less across networks. In Section 4, we evaluate the accuracy
of SNR-based bit rate adaptation across many networks. We also
attempt to quantify the losses that are seen when a sub-optimal bit
rate is selected (a sub-optimal bit rate being one that was not the
best for a particular SNR).

Other studies have explored using the SNR for a predictor in
a mobile setting [8, 24]. Because of the nature of our data, we
are only able to make conclusive claims for static environments.
Though we find that a per-link SNR works well in these cases, we
make no claims that this finding would hold in a mobile setting.

Finally, other studies examine using measures of channel quality
other than the SNR for adaptation algorithms, for instance [3], [16],
and [30]. Though potentially more accurate, these measures can be
complicated or difficult to obtain. We focus our efforts in Section 4
towards using the SNR, as we find that it is simple to determine and
performs well enough for our needs.

2.3 Opportunistic Routing
In Section 5, we measure the possible improvements that could

be seen in our networks using opportunistic routing. Here, we pro-
vide a brief summary of how opportunistic routing differs from
standard routing. In particular, we focus on the opportunistic rout-
ing protocol ExOR [7] and the contrasting shortest-path routing al-
gorithms using ETX [12] and ETT [6].

The ETX of a path is the expected number of transmissions it
will take to send a packet along that path, based on the delivery
probability of the forward and reverse paths. Unless all links are
perfect, the ETX of a path will be higher than the number of hops
in the path, and it is possible for a path with a large number of hops
to have a smaller ETX metric than a path with fewer hops.

The ETT metric is similar to the ETX metric, except that it allows
for varying bit rates. The ETT of a path is the expected amount
of time it will take to send a packet along that path, based on the
delivery probability of the forward and reverse paths, as well as the
bit rate chosen by each node along the path.

A potential shortcoming of this type of shortest-path routing in
wireless networks is that it does not take into account the broadcast
nature of wireless [7]. When the source sends a packet to the first
hop in the path, the packet may in fact reach the second hop since
it was broadcasted. In this case, it is redundant to send the packet
from the first hop to the second. Opportunistic routing exploits this
scenario.

ExOR [7], in particular, works as follows. The source node
broadcasts a packet, and a subset of nodes between it and the desti-

nation receive it. These nodes coordinate amongst themselves, and
the node in that subset that is closest to the destination broadcasts
the packet. A subset of nodes receive that broadcast, and so on until
the packet reaches its destination. Note that it is unlikely that short
paths would see much improvement due to opportunistic routing, as
there are not as many hops in the path to skip. It is also important to
point out that the overhead required by ExOR to coordinate packet
broadcasts is not inherent to opportunistic routing. Indeed, there
are opportunistic routing protocols that operate without this type
of coordination [9]. In Section 5.4 we quantify the improvements
that an ideal opportunistic routing protocol (one with no overhead)
could incur over shortest-path routing via ETX or ETT.

2.4 Hidden Terminals
Hidden terminals occur when two nodes, A and B, are within

range of a third node, C, but not within range of each other. Be-
cause A and B cannot sense each other, they may send packets to
C simultaneously, and those packets will collide. Different studies
find different numbers of hidden terminals in practice: Zigzag [17]
assumes that 10% of node pairs are part of hidden terminals, while
Jigsaw [11] finds that up to 50% of nodes in their networks could
be part of hidden terminals. Both of these studies, as well as oth-
ers [23, 25, 29], only study hidden terminals in one network or
testbed. In Section 6, we examine how frequently hidden terminals
can occur across many networks, as well as how this frequency
changes with the transmit bit rate.

3. DATA
Our data set contains anonymized measurements collected from

110 geographically disperse Meraki [28] networks. These networks
include a total of 1407 APs, and range in size from three APs to 203
APs, with a median of 7 and a mean of about 13. Of these networks,
77 used only 802.11b/g radios, 31 used only 802.11n APs, and two
contained a mix of both kinds of radios. 802.11n traffic used the
20MHz channel. 72 of these networks were indoor networks, 17
were outdoor, and 21 included both indoor and outdoor nodes.1

All radios are made by Atheros, which makes it possible for us to
conduct meaningful inter-network comparisons when dealing with
the SNR (the way in which the SNR is reported can vary across
vendors; see Section 3.1.1). Our data is made up of measurements
from controlled probes sent periodically between APs in the mesh
at varying bit rates. Though these probes are controlled, they are
sent while the network is being used by real users.

3.1 Probe Data
The probe data contains loss rates and SNRs from broadcast

probes sent by each AP every 40 seconds (this is the default re-
porting rate used in Meraki networks [5]). These probes are very
similar to those used in Roofnet [32] to calculate the ETX met-
ric [12]. The loss rate between AP1 and AP2 at a particular bit rate
b is calculated as the average of the loss rates of each probe sent
at rate b between AP1 and AP2 over the past 800 seconds, an in-
terval used to make bit rate adaptation decisions in the production
networks. We collect data from each node every 300 seconds; the
reported loss rate data is for the past 800 seconds, so one should
think of the data as a sliding window of the inter-AP loss rate at
different bit rates.

We refer to each collection of inter-AP loss rates at a set of mea-
sured bit rates as a probe set. Note that one probe set represents
aggregate data from roughly 800/40 = 20 probes for each bit rate.

1We ignore these networks when classifying by environment.



We refer to the set of bit rates present in probe set P as Prates. Each
bit rate b in Prates is associated with a loss rate, bloss.

We use the loss rates and SNRs of these probes to measure the
accuracy of SNR-based bit rate adaptation algorithms in Section 4,
to measure the potential improvements from opportunistic routing
in Section 5, and to determine the frequency of hidden terminals
in Section 6. Before delving into these problems, we discuss two
properties of our data set in more detail.

3.1.1 SNR
Each received probe has an SNR value associated with it, re-

ported by the Atheros chip and logged on the Meraki device. The
MadWiFi driver reports an “RSSI” quantity on each packet recep-
tion. The 802.11 standard does not specify how this information
should be calculated, so different chipsets and drivers behave dif-
ferently. The behavior of MadWiFi on the Atheros chipset is well-
documented on the MadWiFi web site2 and has been verified by
various researchers (including us in the past). The MadWiFi docu-
mentation describes the RSSI it reports as follows:

“In MadWiFi, the reported RSSI for each packet is ac-
tually equivalent to the Signal-to-Noise Ratio (SNR)
and hence we can use the terms interchangeably. This
does not necessarily hold for other drivers though.
This is because the RSSI reported by the MadWiFi
HAL is a value in dB that specifies the difference be-
tween the signal level and noise level for each packet.
Hence the driver calculates a packet’s absolute signal
level by adding the RSSI to the absolute noise level.”

In this paper, we use the term SNR rather than RSSI because the
former is a precise term while the latter varies between vendors.

The SNR for a given probe set is not always the same because
wireless channel properties vary with time. As mentioned, each
probe set contains data from about 20 probes per each bit rate,
which are averaged to produce tuples of the form

〈Sender, Bit rate, Mean loss rate, Most recent SNR〉

There is one such entry for each probed bit rate from each sender
AP, and the means are calculated using the number of probes re-
ceived at each bit rate from the neighbor. The transmissions at the
different bit rates are interspersed, and the SNR at each bit rate may
be different for each bit rate because of channel variations. We use
the median of these SNRs as the “SNR of the probe set”. We find
that this way of estimating the receiver SNR over the duration of
these probes is robust, as the SNR values within a probe set do not
value significantly; see Figure 2, explained below.

Figure 2 presents a CDF of the standard deviations of SNRs
within each probe set as well as over each link. The standard devi-
ation within each probe set is small (less than 5 dB approximately
97.5% of the time). The bulk of the observed SNRs in our data set
lie between 0 and 70 dB. We also present the standard deviations
of the SNRs on each link and within each network over time, to
illustrate the diverse range of SNRs present in each network. Not
pictured is the standard deviation of the k most recent SNR values
on a link, which we found to be comparable to the standard devia-
tion within a probe set for small values of k; i.e., the SNR on a link
does not vary significantly on short time scales.

3.1.2 Throughput
A word on the definition of throughput is in order. What really

matters in practice is the performance observed by applications that

2http://madwifi-project.org/wiki/UserDocs/RSSI
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Figure 2: CDF of the standard deviation of SNR values within a
probe set, for individual links, and for the network at large. The
standard deviation of the SNR within a probe set is less than 5
dB over 97.5% of the time. The standard deviations taken over
all the links of each network are quite a bit larger, indicating
each network has links with a diverse range of SNRs.

run over transport protocols like TCP. Unfortunately, using link-
layer measurements to predict the application-perceived throughput
and latency of data transfers is difficult, if not impossible, with the
data set we have (for instance, we don’t have information about
the burst loss patterns or over short time scales). We do know,
however, that with a good link-layer error recovery scheme and a
good transport protocol, the throughput should track the product of
the bit rate and the packet success rate. In this paper, we use the
product of the bit rate and packet success rate as the definition of
throughput. This metric is what some bit rate adaptation schemes
like RRAA [38] seek to optimize.

4. SNR-BASED BIT RATE ADAPTATION
We begin by using our inter-AP probe data to determine how ac-

curate an indicator the SNR is of the optimal bit rate. By “optimal”
bit rate, we mean the bit rate that results in the highest throughput
between two nodes. There are two reasons for investigating this
question:

1. Dynamically selecting a suitable bit rate is a significant factor
in achieving high throughput in wireless network.

2. For bit rate adaptation schemes that use frame-level informa-
tion, such as [4] and [38], it takes a non-negligible amount of
probe traffic and time to pick the best rate. As networks move
from 802.11b/g to 802.11n, there are many more bit rate con-
figurations to pick from. It is possible that the SNR can be
used as a hint to narrow down the set of bit rates to consider,
especially in relatively static settings involving fixed mesh
APs, saving much of the current overhead of probes.

Our main finding in this section is that the SNR is not an accurate
indicator when trained over an entire network (i.e., when one SNR-
to-bit-rate look-up table is used for an entire network), but as the
specificity of the training environment increases (from per-network
to per-link), the SNR begins to work quite well. For a given link,
it is possible to train the nodes to develop a simple look-up method
keyed by SNR to pick the optimal bit rate almost all the time. This
result implies that one could not use the SNR to select the opti-
mal bit rate between two APs without knowing anything about the
condition of the link between them. However, with knowledge of



a link’s condition, a simple bit rate selection algorithm using the
SNR would likely work very well. The caveat is that this result
holds in our data set for inter-AP communication. It is probable
that it would hold for static clients, but not as likely to hold for
mobile ones (see Section 4.6).

4.1 Bit Rate Selection Using SNR
Recall that the SNR is a measure of how much a signal has been

corrupted by noise. Intuitively, a higher SNR indicates a “better”
link, and one would expect to be able to send more information, i.e.,
use a higher bit rate on that link. Similarly, a low SNR indicates a
poor link, and one would expect to need a lower bit rate. It is this
intuition that motivates SNR-based bit rate adaptation. Indeed, the
throughput and optimal bit rate clearly depend on the SNR accord-
ing to Shannon’s theorem, but the question is whether our relatively
coarsely-sampled SNR can be used as an accurate hint for deter-
mining the correct bit rate. Our bit rate adaptation algorithm works
as follows: To select the bit rate for a link between AP1 and AP2,
measure the SNR s on this link. Then, using a look-up table that
maps SNR values to bit rates, look up s and use the corresponding
bit rate.

The key question in this method is how to create the look-up
table from SNR to bit rate. For a probe set between AP1 and AP2,
we define Popt as the bit rate that maximized the throughput for a
particular probe set, i.e.,

Popt = max{b× (1−bloss) : b ∈ Prates}

Given the SNR and Popt values from every probe set P in our data
set, we consider three options for creating the look-up table:

1. Network: For each network n and each SNR s represented
in our data for n, assign bit rate b to s, where b is the most
frequent value of Popt for SNR s (i.e., the bit rate that was
most frequently the optimal bit rate for the probe sets with
SNR s). For links in network n, select the bit rates by using
n’s look-up table.

2. AP: Instead of creating one look-up table per network, create
one per AP. For a particular link, the source will use its own
look-up table to select the bit rate, but this table will not vary
with the destination.

3. Link: Instead of creating one look-up table per AP, create
one per link. Use a link’s own table to select its bit rates.
This approach differs from the AP approach in that each AP
now has one table per neighbor.

As listed, each of these methods uses a more specific environ-
ment than the last. As a result, each would have a different start-up
cost. With the first, training needs to be done on the network as a
whole, but not per-link. If one were to add a link to the network, the
same look-up table could still be used (though it may be beneficial
to re-train if the network changed drastically). With the second,
training would need to occur when a new node was added, but only
at that node. With the third, training would need to occur every
time a new link was added, at both the source and destination of
the link; this is discussed more in Section 4.5.

Note that we could also make a global look-up table, where the
same look-up table was used for every link in every network. This
strategy would have virtually no start-up cost. However, it would
also only work well if Popt never changed (i.e., if it were the case
that, for a particular SNR value, the optimal bit rate was always the
same regardless of the network or link that we were using). Figure 3
shows the unique values of Popt for each SNR in our 802.11b/g
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Figure 3: Optimal bit rates for an SNR at a particular time,
over our entire data set. Many SNRs see different optimal bit
rates at different times, which motivates the need for a better
method than a global SNR look-up table.

networks (a similar result holds for 802.11n, which we do not show
separately here). Note that each probe set contains data for each bit
rate, so on any link all bit rates have a chance of being optimal.

We find that one bit rate is not always optimal for a particular
SNR in most cases, indicated by the fact that many SNRs have
points at multiple bit rates. Occasionally there is a clear winner:
for SNRs above 80 dB, the optimal bit rate is 48 Mbit/s in our
data set (we don’t evaluate the performance of 54 Mbit/s because
Meraki does not probe that rate as frequently [5]). However, for the
majority of SNRs, at least two bit rates, and in some cases as many
as six, could be the best. Thus, for most of this section, we do not
present results for the global look-up table, as Figure 3 indicates
that it is not a viable bit rate-selection strategy (and indeed, we
have verified that it is not with our own analysis).

As an aside, note that in Figure 3, 1Mbit/s is never the optimal
bit rate; each link always performed better with a higher bit rate.
This result leads us to believe that ACKs, which are sent at 1Mbit/s
in 802.11b/g, could possibly be sent at a higher bit rate, at least for
static nodes. This is the approach taken in 802.11a.

4.2 Distribution of Optimal Bit Rate with
SNR

Though Figure 3 shows that one SNR can have multiple optimal
bit rates over time, it does not give us any information about the
frequency with which each bit rate is optimal. It may be the case
that, for each SNR, one bit rate is the best 99% of the time over all
networks, in which case even a global look-up table would work
99% of the time.

To understand this notion better, we consider the following:
Given a particular percentile p, what is the smallest number of
unique bit rates needed to select the optimal bit rate p% of the
time? For example, if one bit rate was the best 67% of the time
for a given SNR and another was the best 30% of the time, then it
would take two bit rates to select the optimal bit rate 95% of the
time, but only one to select it 50% of the time.

Figure 4 shows this result for varying percentiles in each of our
three cases (per-network, per-AP, and per-link), for 802.11b/g net-
works. We can see from Figure 4(a) that a network-centric ap-
proach can still require more than three unique bit rates before it
is able to predict the optimal one with 95% accuracy. This implies
that a network-based look-up table would not be able to be at least
95% accurate in all cases. However, as we move to the per-AP
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Figure 4: Number of unique bit rates needed to achieve the optimal bit rate various percentages of the time, for 802.11b/g. As the
specificity of our look-up table increases (from being aggregated over all networks to using per-link data), the number of unique bit
rates needed decreases.
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Figure 5: Number of unique bit rates needed to achieve the optimal bit rate various percentages of the time, for 802.11n.

method (Figure 4(b)), the situation improves; fewer bit rates are
needed before we can select the optimal one with 95% accuracy. In
the per-link case (Figure 4(c)), for each SNR, it is common for one
bit rate to be the best more than 95% of the time (note that these
results do not imply that the same bit rate is best 95% of the time
for all SNRs).

Figure 5 shows the percentile results for 802.11n networks. Sim-
ilar to the results for 802.11b/g networks, we see that performance
improves as we use a more specific look-up table. However, unlike
the 802.11b/g networks, we see that, even in a link-specific setting,
the SNR does not frequently predict the optimal bit rate at least
95% of the time. This is not particularly surprising, as 802.11n has
significantly more bit rates than 802.11b/g. Although it may not be
possible to use only SNR data for 802.11n bit rate adaptation, it is
likely that the SNR could be used to reduce the number of probes
used in probe-based bit rate adaptation; we discuss this more in
Section 4.5.

4.3 Consequences of Selecting a Suboptimal
Bit Rate

In the previous section, we discussed how frequently our bit rate
selection scheme could select the optimal bit rate. Here, we ex-
amine the penalty of selecting a suboptimal bit rate. Recall that
because the throughput depends on the loss rate as well as the bit
rate, it is possible for a low bit rate that sees little loss to have
throughput comparable to a higher bit rate that sees more loss. If it
is the case that the throughput of the optimal bit rate is comparable
to that of other bit rates, then the more coarsely-grained look-up
tables would still be effective (since selecting a suboptimal bit rate
would not affect performance significantly).

In this section, we are concerned with quantifying the potential
loss in throughput that occurs from using our simple bit rate selec-
tion method versus using the optimal bit rate every time (i.e., using
a scheme with perfect knowledge). Because our throughput mea-
surements are upper bounds on the actual throughput, it is possible
that we would see higher losses in practice. Nonetheless, we ex-
pect these results to be indicative of the differences we would see
between each of our methods in practice.

To determine this loss, for each of our three strategies, we cre-
ate the appropriate look-up table. Then, for every probe set P, we
calculate two quantities: the throughput of the probe in P sent at
the optimal bit rate, and the throughput of the probe in P sent at
the rate that we would have selected using the look-up table. Fig-
ure 6(a) shows the CDF of these differences for 802.11b/g, for each
of the three cases. In addition to the link-, AP-, and network-based
approaches, we also show the results for a global look-up table (dis-
cussed previously) for comparison. We choose to show absolute
differences instead of relative differences as we find these values to
be more instructive. For instance, a 100% loss in throughput could
be from 2Mbit/s to 1Mbit/s, or 40Mbit/s to 20Mbit/s; we consider
the latter case to be much worse.

The most interesting conclusion from this graph is that there is
very little difference between network-wide and global training, but
that link-specific and AP-specific training are considerably better.
These findings suggest that many individual networks may well ex-
hibit the degree of variation that one might only expect across a
range of different networks, insofar as throughput results are con-
cerned. On the other hand, it generally takes far more bit rates to
achieve the 95th-percentile using a global lookup table than it does
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Figure 6: CDF of the throughput differences using the simple bit rate selection method vs. the best bit rate for each probe set for
802.11b/g and 802.11n.

using a network-based lookup table (this graph was not shown in
the previous section).

Figure 6(b) shows the CDF of the corresponding throughput
differences for 802.11n. Here, the difference between network-
wide training and global training is more substantial, and both ap-
proaches are inferior to link-specific training to produce the look-up
table. The absolute throughput difference that we see is generally
much higher than in the 802.11b/g networks. There are two reasons
for this: first, 802.11n is capable of much higher throughput than
802.11b/g, so we can see throughput differences in 802.11n that
are simply not possible in 802.11b/g. Second, as we have seen in
Figure 5, the SNR is not as good a predictor in 802.11n networks
as it is in 802.11b/g networks, and thus we are more likely to see
errors between the throughput achieved from our simple lookup
method and the optimal throughput. Still, it is worth noting that
link-specific training gets the right answer about 75% of the time
even in 802.11n networks (the equivalent number for 802.11b/g is
90%). Further work is required to identify when link-specific train-
ing works well and when it does not.

4.4 Correlation of SNR and Throughput
We also investigate the variation in throughput for a given SNR.

This is different from the previous question; here we are interested
in how much the throughput can vary for a particular SNR, not the
potential loss in throughput that we expect to see from our simple
bit rate selection method.

Figure 7 shows the SNR vs. the median throughput seen by
probes with that SNR in 802.11b/g networks. The mean through-
put increases with the SNR until an SNR of about 30 dB, and then
levels off. These curves track the theoretical SNR-vs-throughput
curves calculated in [13] and [18]. A similar result holds for
802.11n, which we do not show here. Not surprisingly, 802.11n
networks see a higher peak value than the 802.11b/g networks. In
802.11n, the throughput tends to level off around 15dB instead of
30dB. In both cases, the variation (measured in Figure 7 by the up-
per and lower quartiles) is largest in the steepest part of the curves.

4.5 Practical Considerations
Though our primary goal in this section was to examine how

well the SNR could be used in bit rate adaptation algorithms, we
briefly touch on some of the practical considerations of using our
SNR-based look-up tables in the link-specific case.
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4.5.1 802.11b/g
For 802.11b/g, Figure 4 indicates that one bit rate can be used

for each SNR with high accuracy. Because of this result, for each
SNR on a link, only one probe set per day ever needs to be sent3.
Algorithm 1 presents a viable strategy for source s to select a bit
rate to use to send to destination d.

Since we see standard deviation of <10dB for the SNRs on 90%
of links (Figure 2), we do not expect to see many different SNR
values, and thus not to need many different probe sets. Also note
that since each source uses its own look-up tables, there is no need
for coordination amongst nodes.

4.5.2 802.11n
For 802.11n, we envision making a look-up table as described

above, but keeping track of the k best bit rates for each SNR (where
k is small; perhaps two or three). A standard probing algorithm
(for example, SampleRate [4]) could be used in conjunction with
this augmented table, restricting its probes to the bit rates present
for each SNR. This strategy effectively divides bit rate selection

3We say “per day” because we only have one day’s worth of data.
Additionally, it may be worthwhile to send probes more frequently
(e.g., once every hour), in case conditions change drastically.



Algorithm 1 Bit rate selection for source s sending to destination
d, for 802.11b/g. lookup_table[snr,d] holds the best bit rate for an
SNR snr measured on the link s→ d. This algorithm returns the bit
rate for s to use when sending to d.

Measure the SNR snr to d
if lookup_table[snr,d] exists then

r = lookup_table[snr,d]
else

Send a probe set to d
Determine bopt for this probe set
lookup_table[snr,d] = bopt
r = bopt

end if
Return r

into two phases: Finding the k best bit rates for each SNR, which
involves probing at all bit rates, and probing at that restricted set of
bit rates once the k best are found. Algorithm 2 presents a possible
strategy. We refer to full probe sets as ones that send probes at all
bit rates; these are the types probe sets we have discussed thus far.
We refer to restricted probe sets as those that send probes only at
certain bit rates.

Algorithm 2 Bit rate selection for source s sending to destination
d, for 802.11n. lookup_table[snr,d] holds the k best bit rates for
an SNR snr measured on the link s→ d. This algorithm returns the
bit rate for s to use when sending to d.

Measure the SNR snr to d
if lookup_table[snr,d] exists then

Let C = lookup_table[snr,d]
Send a restricted probe set to the bit rates in C
Let bopt be the best bit rate in this restricted probe set
r = lookup_table[snr,d]

else
Send a full probe set to d
Determine the k best bit rates in this probe set. Let C be this
set, and let bopt be the best bit rate in this probe set (as before)
lookup_table[snr,d] =C
r = bopt

end if
Return r

The key concern with this algorithm is whether the k best bit
rates in the first full probe set are indeed the k bit rates to which
we should restrict future probes. Recall that Figure 5(c) implies
that four bit rates are enough, i.e., that there are no more than four
different values of bopt for each link. However, this does not imply
that the top four bit rates in one probe set comprise the same set as
the four distinct values of bopt

However, we find that it is sufficient to send only one full probe
set for each 〈SNR, link〉 pair; the above algorithm performed with
91% accuracy on our data set, for k = 4. Note that this substantially
decreases the overhead of probing. Currently, Meraki sends probes
at 29 of the 802.11n bit rates, and could one day send as many as
64 (the number of bit rates in 802.11n for a particular channel).
Algorithm 2 decreases this number by over 86%.

4.6 Key Take-Aways and Caveats
The results that we have presented in this section are from inter-

AP measurements taken in a static setting with stationary APs. In
these situations, across a wide range of networks, we find that per-
link SNR-based training can narrow down the optimal bit rate a

large fraction of the time for both 802.11b/g and 802.11n, verify-
ing the claims of previous small-scale studies. We also found that
the penalty for picking a suboptimal bit rate is small much of the
time for 802.11b/g. It is also important to note that links vary sub-
stantially in the same network and between networks, so training
the SNR-to-rate look-up table on a different link in the same net-
work will be less accurate.

That said, we should note that these findings regarding per-link
training will not necessarily translate directly for communication
to a client or between two clients, particularly if they are mobile.
Here, link conditions change more frequently and depend on speed,
as previous work has shown. Our results may translate to clients
that are mostly static, but even so one has to consider the fact that
movement in the environment may render even per-link training
less effective than in the inter-AP setting within a mesh network.

5. OPPORTUNISTIC ROUTING
Having studied the performance of bit rate adaptation protocols

in mesh networks, we now turn our attention to the performance
of recently-developed mesh routing protocols. Like bit rate adapta-
tion, routing is a significant factor affecting throughput of mesh net-
works. Traditional mesh routing involves finding a single path be-
tween any source and destination, using a metric like the expected
number of transmissions (ETX) to pick next-hops to each destina-
tion [12]. With ExOR [7] and MORE [9] researchers have pro-
posed using packet-level opportunistic routing protocols that take
advantage of broadcast transmissions and probabilistic receptions
to reduce the number of transmissions needed to transfer packets
between a source and destination (a more detailed description of
these protocols is given in Section 2.3).

To date, these protocols have been evaluated only on relatively
small lab testbeds. With the inter-AP data we have, we can evaluate
these protocols and compare them to traditional routing. The rea-
son is that the reduction in the number of transmitted packets due
to opportunistic routing, to first order, depends only on the packet
loss rates between nodes.

For opportunistic routing, we are interested in the performance
of an ideal scheme that incurs no overhead; in this sense, it models
MORE, not ExOR, because of the absence of explicit coordination
in the former. We are interested in quantifying the following: given
each 〈AP1, AP2〉 pair in our data, what is the expected number of
transmissions to send a packet from AP1 to AP2 using opportunistic
routing (ExOR) vs. using a standard routing protocol (ETX). In this
section, we restrict ourselves to data from our 802.11b/g networks,
and use a snapshot of our data, due to processing time.

5.1 Expected Improvements from Oppor-
tunistic Routing

The right comparison should use a bit rate adaptation method for
traditional routing. However, we also need to consider the bit rate
at which the opportunistic routing protocol operates. This question
is a difficult one because there is no satisfactory bit rate adaptation
protocol available for opportunistic routing. In this section, adopt
a simple approach and calculate the improvements as if the entire
network were operating at the same bit rate; we present the results
for each bit rate separately. In Section 5.4, we turn our attention
to allowing variable bit rates. Though it is likely that different bit
rate adaptation algorithms will affect the throughput of opportunis-
tic routing in different ways, we still expect our results to be highly
instructive and likely to reflect the gains one might observe in prac-
tice.

We now have, for each bit rate, a matrix of packet success rates
for each network (one success rate for each link). Given this ma-
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(ExOR) over two-way ETX (ETX2)

trix, we can compute the ETX cost for each link (explained below).
With this cost, our standard routing protocol is simply shortest-path
routing using ETX as the metric, and the ETX cost between s and d
under this routing protocol is the sum of the ETX metrics for each
link on the resulting path from s to d.

Calculating the ExOR cost from s to d is only slightly more com-
plicated. First, we determine the set C of neighbors of s that are
closer to d under the ETX metric. If there is no node closer to d,
then ExOR(s→ d) is simply ET X(s→ d). Otherwise, imagining
that s broadcasts the packet to these nodes, for each node n ∈C, we
calculate r(n) = the probability that n received the packet and that
no node closer to d also received it. Then,

ExOR(s→ d) =
1+∑n∈C r(n) ·ExOR(n→ d)

1− r(s)
(1)

The 1 in the numerator accounts for the one transmission that s
made to broadcast the packet in the first place, and the denominator
accounts for the fact that there is a small probability that the packet
will not leave s.

To calculate the ETX metric of a link, we consider two ap-
proaches. ETX1 uses a probability of 1 for the link-layer ACK,
which is sent at the lowest bit rate and usually has a much higher
probability of arriving than a packet. This means that, under the
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transmissions for ETX1 (perfect ACK channel) and ETX2. The
asymmetry does not change significantly with the bit rate.

ETX1 metric, the cost of sending from s to d is 1
P(s→d) , where

P(s→ d) is the delivery probability on the link s→ d. ETX2 uses
the packet success rate on the reverse link, which is along the lines
of the metric suggested in the original ETX paper. Under the ETX2
metric, the cost of sending from s to d is 1

P(s→d)·P(d→s) . It is al-
most certainly the case that ETX1 is what networks should use, not
ETX2, but we compare against both ETX1 and ETX2 here. Fi-
nally, we restrict our attention to networks with at least five nodes,
as smaller networks are unlikely to show significant differences.

Figures 8 and 9 show the fraction improvement of ExOR over
ETX for each source-destination pair in all of our networks with at
least five nodes. This fraction is in terms of the expected number
of transmissions needed to send a packet. An improvement of x
means ETX1 requires (x ∗ 100)% more transmissions than oppor-
tunistic routing (for example, an ExOR cost of 1.2 and an ETX
cost of 1.5 is an improvement of .25). The mean of the ETX1 to
opportunistic routing ratio of the expected number of packets sent
ranges from .09 to .11 depending on the bit rate (that is, roughly
a 9-11% improvement); the median ranges from .05 to .08 for all
bit rates. For between 13% and 20% of pairs, there is no improve-
ment, regardless of bit rate. With ETX2, the improvement is more
substantive: a mean ratio of between .39 and 1.3 for the five low-
est bit rates, and between 7.26 and 9.25 for the two highest. The
median is between .30 and .86 for the five lowest bit rates, and .80
and .86 for the two highest. If we restrict our analysis to the 20%
of source-destination pairs with the most improvement, we see a
slight improvement for ETX1. In this case, the mean ranges from
.25 to .29, and the median from .24 to .27.

5.2 Causes of Improvement
In this section, we examine the factors that can cause a path to

see improvement (or not) with ExOR. In particular, we find that
the differences between the improvements over ETX1 and ETX2
arise due to link asymmetry, the overall lack of improvement of
ExOR over ETX1 is a result of many paths being short, and he
average improvement from ExOR roughly increases as path length
increases.
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rate.

5.2.1 Impact of Link Asymmetry
The reason that ETX1 and ETX2 have such different perfor-

mance is that link delivery rates are asymmetric. Figure 10 shows
the CDF of the link asymmetries: the x-axis is the ratio of the
packet success rate at the optimal bit rate between A and B, and
the packet success rate at the optimal bit rate between B and A,
for each link AB. Although the degree of asymmetry is not as pro-
nounced as in some previous smaller-scale studies, it exists, and is
the reason why the gains of opportunistic routing are more signif-
icant with ETX2 (recall that ETX2 assumes a lossy ACK-channel
whereas ETX1 does not).

5.2.2 Impact of Path Length and Diversity
As discussed in Section 2.3, short paths are unlikely to see much

benefit when using ExOR. Figure 11 shows that, indeed, most paths
are short. For the five lowest bit rates, between 30 and 40% of
paths are only one hop, and around 80% are fewer than three hops.
However, for the two highest bit rates, roughly 40% of the paths
are more than three hops. These long paths are the ones on which
ETX2 sees the greatest improvement. The lack of improvement of
ExOR over ETX1 supports the recent work of Afanasyev and Sno-
eren, who found that ExOR sees most of its improvement due to its
bulk-acknowledgment scheme rather than because of opportunistic
receptions [1].

In Figure 12 we plot the path length vs. the median and max-
imum improvement. Because the trends for each bit rate are the
same, Figure 12 presents these quantities averaged over all bit rates.
The median improvement almost always increases with the path
length. This result is expected, and is what is indicated in [7]. How-
ever, the maximum improvement tends to decrease with the path
length. We also see a similar result with path diversity (not pic-
tured): the median improvement increases as the number of diverse
paths from the source to the destination increases, but the maximum
improvement tends to decrease. The fact that the median improve-
ment increases in both of these cases makes sense; more nodes in
between the source and destination means more nodes with for-
warding potential.

Non-intuitively, the paths with the maximum proportional im-
provements tend to be short paths. For instance, consider the path
A→ B→ C, with link probabilities of .9 on the links A→ B and
B→C, and also a probability of .3 that the packet goes from A to
C directly when broadcasted. We expect to need roughly 2.2 trans-
mission for each packet (the shortest ETX1 path is A→ B→C, but
there is a probability of .3 that ExOR will reduce this to 1 transmis-
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Figure 12: The median and maximum improvement from op-
portunistic routing vs. path length. Note that while the me-
dian improvement increases with path length—as expected—
the maximum in fact decreases.

sion). Hence, the high proportional improvement. However, these
types of paths are somewhat rare, which is why the median path
improvement still increases with path length.

5.3 Network Variability
Having discussed what types of links see see the best ExOR im-

provements, we now turn our attention to the types of networks that
do. Given our conclusions in the previous section, we might expect
that larger networks (with the potential for longer paths) would see
the good improvements, as the median improvement increases with
path length.

In Figure 13 we plot the mean improvement over all links in a
network vs. the number of nodes in the network (for readability,
we leave out our largest networks, but the result is consistent), at
1Mbit/s (the results are similar at other bit rates; we do not present
them here). We also include standard deviation bars to indicate the
variability of improvement. Counter-intuitively, the mean improve-
ment does not increase with network size; in fact, it remains rela-
tively constant. Similarly, the variability in improvement is about
the same regardless of size. The reason for this constancy is that
even though large networks have more long paths—and thus paths
that tend to see greater improvements with ExOR—they also have
many more shorter paths than small networks. These short paths
see less improvement, keeping the mean low, as well as the vari-
ance.

5.4 Bit Rate Selection for Opportunistic
Routing

In Section 5.1, we examined the benefits of opportunistic routing
when the entire network was operating at the same bit rate. In this
section, we allow APs to send at different bit rates. Because bit rate
adaptation in opportunistic routing is an open question, we do not
adapt a particular rate adaptation strategy. Instead, we examine the
improvements in a network with perfect knowledge about which bit
rate each AP should use.

Because we allow for variable bit rates, our definition of
ExOR(s→ d) changes slightly; we refer to this new definition as
ExOR′(s→ d). Before calculating ExOR(s→ d), we must calcu-
late ExOR′(s→ d,rate) for each bit rate that s can use. s’s bit rate
of choice will be the one that minimizes this value.

For a bit rate r, we first determine the set C of neighbors of s that
are closer to d, but instead of using the ETX metric, we use the ETT
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time) of opportunistic routing (ExOR) over ETT.

metric [6]4. Recall that the difference between the two is that ETT
takes into account the bit rate; thus, it reflects the expected amount
of time it will take to transmit a packet, not the expected number
of transmissions. Even though we are concentrating on a particular
bit rate r, we use ETT here, not ETX, to allow for the possibility of
the nodes in C sending at rates other than r. After all, r need not be
the bit rate for the entire path.

Then,

ExOR′(s→ d,rate) =
1

rate +∑n∈C r(n) ·ExOR′(n→ d)
1− r(s)

(2)

where r(n) is the same as in Equation 1: the probability that node
n received the packet and that no node closer to d also received it.
Note that because we are concerned with the expected transmission
time, not the expected number of transmissions, we use 1

rate in the
numerator, rather than 1. Then,

ExOR′(s→ d) = argmin{ExOR′(s→ d,rate)} (3)

and s would use the corresponding bit rate when sending to d.
4specifically we are using one-way ETT, i.e., considering only the
probability of the forward link, analogous to ETX1
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Figure 15: Fraction of hidden triples to relevant triples at a
threshold of 10%.

Figure 14 shows the results using this method. The CDF is com-
parable to that in Figure 8; even with perfect knowledge of bit rates,
opportunistic routing offers little benefit on most paths.

6. HIDDEN TRIPLES
Our next set of results relates to the likelihood of interference

from concurrent transmissions and how frequent hidden terminals
are at each bit rate. In Section 4 we examined the performance of
various bit rate adaptation schemes. Even with an ideal rate adapta-
tion algorithm, throughput can still be affected by interference from
hidden terminals. We estimate the frequency of hidden terminals in
this section, using networks with at least 10 APs.

Since a hidden terminal is a property of the MAC protocol, which
in turn depends on how the carrier sense thresholds are picked and
the method used for carrier sense, we investigate the occurrence of
hidden triples. We define a hidden triple as follows. A triple of
APs, 〈AP1,AP2,AP3〉, in a network is a hidden triple at a bit rate
b if AP2 can hear both AP1 and AP3 at bit rate b, but neither AP1
nor AP3 can hear each other when sending at bit rate b. We define
AP1’s and AP2’s ability to hear one another at bit rate b based on a
threshold t: if we observe that AP1 and AP2 could hear more than t
percent of the probes sent between them at bit rate b, then AP1 and
AP2 can hear each other; otherwise, they cannot.

We are interested in what fraction of triples in a network are
hidden triples at each bit rate. It is not particularly interesting to
determine what fraction of all triples are hidden triples, since three
APs that are far from each other are not likely to become hidden
terminals or interfere appreciably with one another. Instead, we
want to know what fraction of relevant triples are hidden triples.
We define a relevant triple 〈AP1, AP2, AP3〉 as one where AP1 and
AP3 can both hear AP2; AP1 and AP3 may or may not be able to hear
each other. If they cannot, we have a hidden triple.

6.1 Frequency of Hidden Triples
Figure 15 shows the CDF of the fraction of hidden triples to rele-

vant triples for a threshold of 10% (our results don’t change signifi-
cantly as the threshold varies). For each of our 802.11b/g networks,
we used the probe data to determine the number of relevant triples
at each bit rate, and then the proportion of those that were hidden
triples. The CDF is taken over all networks; for example, roughly
13% of networks had fewer than 50% hidden triples at 1Mbit/s.

For the most part, as the bit rate increases, the fraction of hidden
triples to relevant triples also increases. One exception is the results
for 6Mbit/s and 11Mbit/s; there are almost always fewer hidden
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Figure 17: Change in range of APs at different bit rates. The
change is calculated with respect to the range at 1Mbit/s, thus
by definition the change in range at 1Mbit/s is 1.

triples at 11Mbit/s than at 6Mbit/s. We believe that this exception
is because the 11Mbit/s rate uses DSSS rather than OFDM, which
is known to have better reception in 802.11 at lower SNR values.
(1Mbit/s also uses spread spectrum; all other bit rates use OFDM).

6.1.1 The Capture Effect
In the previous section, we gave a rough upper bound on the

number of hidden terminals that could be present in a network.
Here, we estimate how many of those could potentially be saved
by the capture effect. The capture effect [36] is the property of
802.11 radios where a strong signal can be decoded even when a
weak signal is received at the same time. In the context of our hid-
den terminal example, if AP1 and AP2 both sent to AP3 at the same
time, but AP1 had a much stronger signal, it is possible that AP1’s
communication would not be disrupted by the signal from AP2.

Whether the stronger of the two signals is captured depends on
the difference in their SNRs; if this difference is below a certain
threshold, the stronger signal will not be captured. This threshold
can vary. Ware et al. find that under certain conditions a difference
of 5dB is sufficient [36], while others report larger values of over
20dB [26]. In Figure 16, using a relatively conservative estimate
of 10dB, we again estimate the number of hidden triples at each bit
rate (as in Figure 15).

Here, we see that roughly 7% of networks had fewer than 50%

hidden triples at 1Mbit/s, and again, we see the percentage of hid-
den triples increases with the bit rate, with the exception of 6Mbit/s
and 11Mbit/s.

6.1.2 Discussion
Our results show that hidden triples are quite common; the me-

dian value over all the networks even at the lowest 1Mbit/s bit rate
is about 7% of triples when there is only a 10% chance of suc-
cessfully receiving a packet and we consider the capture effect, and
13% of hidden triples when we do not. However, these percent-
ages do not necessarily translate into the percentage of APs in a
network that are involved in hidden triples (i.e., 13% of relevant
triples being hidden triples does not mean that 13% of the APs in
the network are involved in hidden triples). In fact, for each bit rate,
when considering the capture effect, we find that a median value of
between 65% and 81% of APs are involved in a hidden triple in any
given network, with between 46% and 63% of APs acting as AP1
or AP2 at some point (i.e., sending data in a hidden triple). When
not considering the capture effect, between 81% and 90% of APs
are involved in a hidden triple, with between 62% and 75% of APs
acting as AP1 or AP2.

We also note that this result is an upper bound on the percentage
of hidden terminals that could occur in these networks, as a hid-
den triple may not always result in a hidden terminal. Of course,
it might be possible to eliminate hidden terminal occurrences alto-
gether by using carrier sensing parameters that are conservative, but
that would reduce transmission opportunities. We note that a 10%
chance of receiving packets at 1Mbit/s is actually symptomatic of
a very low SNR; frame preambles are sent at this bit rate, which
means that in these cases the preamble isn’t being detected 90% of
the time.

As such, this result suggests to us that hidden terminals in real-
world 802.11b/g mesh networks with static APs using current MAC
protocols probably occur in around 7% of triples or more, and in-
volve at least 65% of APs. These values are higher than those as-
sumed by [17], and in some networks, we even see values higher
than those reported by [11]. This knowledge is helpful for systems
like ZigZag [17], which require an accurate model of hidden termi-
nals in a network for their analysis, and also for estimating the loss
in throughput that could be incurred using a perfect bit rate adapta-
tion scheme. The caveat is that, since our data is for static APs, it is
possible that clients experience hidden terminals at higher or lower
rates.

6.2 Range
People colloquially refer to the “range” of radio communication,

but this is an ill-formed notion because receptions are probabilistic
and depend on the bit rate. We formally define and estimate this
notion as follows: the range of a network at a particular bit rate b
is the number of node pairs that can hear each other at that bit rate.

Because our networks differ in size (in terms of number of APs),
comparing the absolute range across networks is not interesting.
Instead, we measure the change in range of a network. To do this,
we define R to be the range of the network at a bit rate of 1Mbit/s.
For every other bit rate, we look at how the range differs from R by
plotting the ratio of the range at bit rate b to R. (By definition, the
change in range for 1Mbit/s is 1.)

This result is plotted in Figure 17. The error bars represent the
standard deviation across all networks. Two important points stand
out. First, as expected, the mean change in range reduces as the
bit rate increases in a steady way. This property has been noted
anecdotally before, but the way in which it drops has not been
well-understood. Second, there is a tremendous variation in the



drop-off, suggesting that one cannot always conclude that higher
bit rates have poorer reception properties than lower ones under
similar conditions. Indeed, we find that roughly 26% of networks
experience at least one pair of bit rates b1 < b2 where the range
at b2 is higher than that at b1. The majority of these cases (73%)
occur with bit rates of 6Mbit/s and 11Mbit/s, again perhaps a result
of 11Mbit/s using DSSS instead of OFDM.

6.3 Impact of Environment
Figures 15 and 16 indicate that not all networks have similar

proportions of hidden terminals; if they did, we would see much
steeper curves in the CDFs. Here we briefly examine the impact
of the environment—indoor or outdoor—on the number of hidden
triples, as well as the range.

We have found that outdoor networks, not surprisingly, have
a larger range than indoor networks (because the absolute range
depends on the size of the network, we measured the quantity
range/size2, where size is the number of APs in the network.) In-
door networks also tend to see a higher percentage of hidden triples
than outdoor networks, most likely due to their density (indoor net-
works are more likely to have nodes closer to each other). In indoor
networks (most of our data set), when taking into account the cap-
ture effect, we see a median of about 7% hidden triples at a 10%
threshold, at 1Mbit/s. When not considering the capture effect, we
see a median of 14%. However, when restricting ourselves to only
outdoor networks, these percentages drop to less than 1% and 2%,
respectively.

7. CONCLUSION
This paper analyzed data collected from over 1407 access points

in 110 commercially deployed Meraki wireless mesh networks,
constituting perhaps the largest published study of real-world
802.11 networks to date. We found that the SNR is not a suffi-
cient determinant of the optimal bit rate within a same network, but
on a given link with static nodes (APs), the SNR can be a good in-
dicator with sufficient training. We found that an ideal opportunis-
tic routing protocol does not reduce the number of transmissions
on the majority of paths as compared to traditional unicast rout-
ing. We also found that “hidden triple” situations, where a triple of
nodes A,B,C have the property that AB and BC can communicate
with each other, but AC cannot are more common than suggested
in previous work (a median of 13% of all triples in our results), and
increase in proportion as the bit rate increases.

These findings, and others in the paper, shed light on three crit-
ical areas that have seen a great deal of activity in recent years:
bit rate adaptation, mesh network routing, and MAC protocols to
overcome interference. Bit rate adaptation and mesh routing both
significantly affect throughput, while interference from hidden ter-
minals can be detrimental to even an ideal bit rate adaptation algo-
rithm. This paper provided more conclusive answers to questions
in all of these areas, using a data set that is larger in scale and di-
versity than any other of which we are aware.
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