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Abstract— Field biologists use animal sounds to discover the presence
of individuals and to study their behavior. Collecting bio-acoustic data
has traditionally been a difficult and time-consuming process in which
individual researchers use portable microphones to recordsounds while
taking notes of their own detailed observations. The recentdevelopment
of new deployable acoustic sensor platforms presents opportunities to
develop automated tools for bio-acoustic field research. Inthis work,
we implement an AML-based source localization algorithm, and use
it to localize marmot alarm-calls. We assess the performance of these
techniques based on results from two field experiments: (1) acontrolled
test of direction-of-arrival (DOA) accuracy using a pre-recorded source
signal, and (2) an experiment to detect and localize actual animals
in their habitat, with a comparison to ground truth gathered from
human observations. Although small arrays yield ambiguities from spatial
aliasing of high frequency signals, we show that these ambiguities are
readily eliminated by proper bearing crossings of the DOAs from several
arrays. These results show that the AML source localization algorithm
can be used to localize actual animals in their natural habitat, using a
platform that is practical to deploy.

I. M OTIVATION

Field biologists use the vocalizations of animals to identify in-
dividuals, census species and to study the dynamics of acoustic
communication [1], [2]. However, even experienced field biologists
have difficulty accurately identifying and locating species acous-
tically, and most researchers are unable to identify more than a
few distinctive individuals. Some acoustic phenomena such as alarm
calling (where individuals produce specific vocalizations in response
to predators [3]) are relatively rare, and are thus difficult to study,
while others, such as duetting (where two individuals interdigitate
their vocalizations [4]) are extremely difficult to properly describe.
Thus, field research of natural populations will benefit from the use
of embedded sensor arrays that are constantly alert, and that are able
to detect acoustic events, localize the sound’s source, and identify the
individual or species producing the sound.

Alarm calls form an ideal system for motivating and testing our
technology because they are infrequent, they are loud, and they are
biologically important. The yellow-bellied marmots at the Rocky
Mountain Biological Laboratory (RMBL), in Gothic, Colorado, have
become a model system for studying alarm communication. Marmots
communicate the degree of risk by emitting a simple single note alarm
call and emit more calls and at a higher rate as risk increases [5].
However, the modal number of alarm calls produced is 1, and it is
remarkably difficult to identify the individual who produced the call
(we are able to localize and identify only about 30% of callers—
Blumstein, unpublished data). Calls are individually-specific and the
adaptive utility of this individuality has been the focus of considerable
study. We know that calls contain information about the age, sex and
exact identity of the caller [6], and we know that marmots are able
to discriminate individuals based solely on their calls [7].

Using the Acoustic ENSBox, a multi-node distributed recording

array, we evaluated the ability of an Approximate Maximum Like-
lihood (AML) source localization algorithm to correctly identify the
location of naturally alarm calling marmots as well as recorded and
re-broadcast alarm calls. Field tests allowed us to comprehensively
evaluate all the features (node time synchronization, self-localization,
event detection, and AML-based DOA bearing estimation) of the
Acoustic ENSBox. Tests under field conditions are essential because
animals move their heads while vocalizing, and because there is
often substantial background noise through which the signals must
be detected.

The main contributions of this paper are: (1) the implementation
of a deployable on-line marmot call detection system based on a
Constant False Alarm Rate (CFAR) algorithm, (2) a centralized
marmot call localization system based on AML bearing estimation,
and (3) a thorough evaluation of the effectiveness of these algorithms
based on a field study detecting real animals in their natural habitat.

II. OVERVIEW OF APPROACH

Distributed source localization is a broad and active research area,
and a diverse set of solutions have been proposed. These solutions
fall into three categories, in which the localization solution is based
on (1) differential signal amplitudes, (2) time-difference-of-arrivals
(TDOA), and (3) comparison of direction-of-arrival (DOA) estimates.
In general, characteristics of the application, the source signal, and
the environment will determine which of these solutions performs
best.

The characteristics of the environment and the nature of the
source signals rule out some of these solutions. The first alternative,
amplitude-based localization, is ruled out by foliage and terrain
complexity, which yields non-isotropic signal attenuation patterns.
Without discovering the complex model of the signal attenuation,
received amplitude values are difficult to map to propagated distances.

The second alternative, TDOA-based localization, requires precise
acquisition of the phases of the signals arriving at different nodes.

Detect 1 Detect 2 Detect N…

Record 1 Record 2 Record N…

AML 1 AML 2 AML N

Combine

…

Node 1 Node 2 Node N

1

2
3

6 5

4

θ1

θ6

θ2

8cm

10+m

Detect 1 Detect 2 Detect N…

Record 1 Record 2 Record N…

AML 1 AML 2 AML N

Combine

…

Node 1 Node 2 Node N

Detect 1 Detect 2 Detect N…

Record 1 Record 2 Record N…

AML 1 AML 2 AML N

Combine

…

Node 1 Node 2 Node N

1

2
3

6 5

4

θ1

θ6

θ2

8cm

10+m

1

2
3

6 5

4

θ1

θ6

θ2

8cm

10+m

Fig. 1. Block diagram of a DOA-based localization system. Note, for the
experimental results in this paper, the AML algorithm was runcentrally.



Fig. 2. The Acoustic ENSBox Platform.

However, the features of animal calls that are most readily extracted
tend to be narrow-band, making precise phase acquisition difficult
in a noisy environment. Furthermore, techniques based on coherent
processing of data from different nodes (e.g., correlation) are limited
by the coherence properties of the acoustic environment and may not
work well when the nodes are separated over tens of meters.

Our approach has therefore focused primarily on the third alterna-
tive, in which the location estimate is computed by combining DOA
estimates assessed at a distributed set of locations. Our implemen-
tation employs a distributed set of small “sub-arrays”, each capable
of independently detecting the target signal and producing a DOA
bearing estimate. The crossing of these bearing estimates are then
combined to produce an estimate of the most likely source location.

In the next sections, we give a brief overview of this implemen-
tation, and highlight some key features of the platform. A detailed
discussion of the processing algorithms follows in Section III.

A. DOA-based localization using distributed sub-arrays

Fig. 1 shows a high level diagram of a DOA-based localization
system. To apply this method, we deploy a collection of sub-arrays
surrounding a target of interest. The sub-arrays are typically deployed
over a wide area relative to the size of each sub-array. In this paper,
we use the Acoustic ENSBox platform [8] shown in Fig. 2 and
described in more detail in Section II-C. Each node in the system
hosts a 11.31 cm tetrahedral microphone sub-array, rotated to form an
8 cm square when viewed from above. These sub-arrays are typically
deployed at least 10 m apart, and often much farther: in the three-
set of experiments presented in this paper, 6 sub-arrays are deployed
surrounding a 70x140 m area (see Fig. 14). This large inter-node
spacing means that any target source can be assumed to be in the far
field of all but perhaps one of the nodes.

After deployment, the sub-arrays are automatically calibrated to
determine the relative positions and orientations of the sub-arrays in
the system. Next, software on the nodes begins implementing the
detection and localization algorithms.

The detection software on each node performs a streaming analysis
of the acoustic data in real time, identifying likely animal call events.
Whenever any individual node’s call detector is triggered, a radio
message is sent to trigger all the nodes in the system to start recording
that event and queue it for further processing. This approach enables
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Fig. 3. The spatial aliasing problem. Sensors at position 0 and D observe
the same phase offset for signalsS1 and S2. When measured phase offsets
are used to deduce direction of arrival, ambiguities result for signals with
λ < 2D.

optimization of the detection threshold such that only the nearest
node to a source need to be triggered.

Once identified, segments of audio containing calls are analyzed
using the Approximate-Maximum-Likelihood (AML) algorithm de-
scribed in Section III-B. Based on the relative phases of signals
recorded at the microphones in a given sub-array, this algorithm
determines a likelihood metric describing the likely bearing to the
source. These metrics are then collected centrally, placed on a map
according to the location and orientation of each sub-array, and
combined into a 2-D pseudo-likelihood map of the source location.
This map is formed by projecting each likelihood metric outwards
from each node to form the joint approximate likelihood of a source
at every point in the 2D space.

B. Performance impact of sub-array size

The performance of the AML bearing estimation algorithm de-
pends on characteristics of the source signal, and on the size and
geometry of the array.

The acoustic sources produced by different animals can vary
significantly. In general, we consider these signals as wideband
because the frequency ratio of the highest to the lowest is much larger
than one. However, when a source may contain only few closely-
spaced dominant frequencies, then the it may behave more like a
narrowband signal. This may presents a problem depending on the
selection of the spacings among the sensors in a sub-array. When a
narrowband source is present, there is a risk that the algorithm may
return ambiguous likelihood metric results. The reason for this is
shown in Fig. 3. Just as the Nyquist theorem states that to avoid
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Fig. 4. Simulated beam patterns for two arrays detecting marmotalarm calls.
Larger arrays yield narrower lobes, but more ambiguity.



aliasing, a signal must be sampled at least at 2x the maximum
frequency of the signal, an analogous property holds forspatial
sampling. In order to measure the phase of an incoming signal by
comparison from two points inspace, those two points must lie in
the same half-wave. Energy in frequencies with wavelengths shorter
than 2x the sensor spacing will be aliased into lower frequencies.
This implies that for a sensor spacing ofD and signal propagation
speedVs, the maximum frequency detectable without aliasing is

Fc = Vs/(2D).

The likelihood metric of the bearing estimate is typically repre-
sented as a polar plot, where the likelihood value is plotted as a
function of the bearing angle. In such a plot, the most likely bearing
estimate is represented by the midpoint of the largest lobe of this
metric. Array size has a two-fold impact on these results.

As the array size increases, spatial aliasing can become a problem.
Whenever the frequency content of the source signal is higher than
the critical frequencyFc, spatial aliasing will producegrating lobes,
(i.e., false lobes) that point in directions other than the true source
bearing [9]. These grating lobes often have heights comparable to
the true main lobe due to various random imperfections. In the
presence of noise, reverberation, or competing sources, grating lobes
can severely complicate identification of the true DOA.

However, as array size decreases, the resolution achievable with the
array also decreases. This resolution is a function of many factors,
including the resolution of a sample and the accuracy of the array
calibration. Lower resolution increases the width of the main lobe,
increasing the uncertainty in the estimate. This tradeoff is depicted in
Fig. 4, which shows simulated beam patterns for two different size
arrays detecting a 4 KHz source; the larger array has narrower lobes,
but more potential ambiguity.

In the analysis of a single array, there is usually a “sweet spot” for
array size where the maximum value of the side lobes will be less
than a certain fraction of the main lobe and thus can be excluded.
However, for high frequency sources (e.g., 6 KHz and above forour
implemented array), the array size sweet spot becomes quite small,
producing a wide, low resolution, main lobe.

To avoid this problem, we ensure high resolution by using relatively
large arrays and address the ambiguity problem by other means.
When bearing data from multiple arrays is combined, some of the
false lobe DOAs are rejected because they are inconsistent with the
lobes from other nodes. While the “beam” projected from a false
lobe has some probability of intersecting with few other lobes, the
DOAs of the true lobes from all the sub-arrays have a much higher
likelihood of crossing near the true location of the source.

This approach has its limits; as the side lobes become increasingly
broad, this approach will eventually fail, hence the array size cannot
be made arbitrarily large. For our purposes, we chose a convenient
array size from a practical engineering implementation point of view,
suitable for a class of sources of interest. These arrays are hosted by
a deployable, general purpose sensing platform described in the next
section.

C. Implementation of the Sub-array Nodes

The deployment described in this paper comprised 6 nodes, each
an independent wireless processor hosting a sub-array. In undertaking
this work, we were fortunate to be able to build upon an existing
platform, the Acoustic ENSBox [8]. The ENSBox was specifically
designed to support this type of application, and it has numerous
features that make this type of deployment practical for the first time.
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Fig. 5. Block diagram of a CFAR marmot detection algorithm. This
implementation is based on a similar algorithm for detecting bird calls [10].

a) Packaging:While packaging issues are far from novel, they
are quite important in practice. In prior attempts to record using
multiple arrays, our equipment was cobbled together from “off-the-
shelf” components and a surfeit of wires, plus heavy batteries to
support devices that were not tuned for low power consumption.
These solutions proved too cumbersome to be practical. In contrast,
the ENSBox is a wireless distributed sensor system. Each unit is
a self-contained processor and array, with an internal battery and a
lifetime of 10 hours. The unit is water-resistant and the array head
can be fitted to a tripod.1

b) Management:As the size of a deployment grows, manage-
ment rapidly becomes a critical concern. The larger the number of
nodes deployed, the greater the likelihood that one or more nodes is
faulty—and this is especially true for prototype systems. To facilitate
deployment, the ENSBox supports a web-based management tool
hosted on each node. By connecting to any one of the nodes and
setting it into “master mode”, the user can use that node as a gateway
to centrally manage the rest of the network. Diagnostics available
through this interface can identify problems with individual nodes
and thus ensure that all nodes are functioning properly. Once the
system is up, the web interface is also used to initiate and manage
the application.

c) Self-configuration:Another important factor in deployments
is self-configuration. The ENSBox system features a self-configuring
multi-hop wireless network, with network diagnostics available from
the management gateway. It also features a sophisticated array self-
calibration system that can establish precise positions and orientations
for all of the arrays in the system. This system, described in detail
in [8], [11], can compute relative array positions to within 10 cm
over an 50x80m field, and estimate array orientation to within
1.5 degrees. Extensive testing has proved that the system is easy to
operate, achieves detection ranges upwards of 100m, and is robust to
noise and intervening foliage, and provides a consistency metric that
immediately indicates whether the results are likely to be valid. By
attending to the consistency metric and performing simple sanity-
checks, we have yet to fail to get accurate self-localization results
from a field deployment. This feature of the ENSBox is an enormous
time-saver because it gives reliable results with low effort, and
eliminates the need to carefully survey the deployment positions.

d) Software API:The final advantage of the ENSBox has been
as an application development platform. The ENSBox provides a
synchronized sampling API that greatly simplifies the development
of collaborative sensing application software [12]. The detector

1We are currently developing version 2 of the ENSBox, which will be
smaller, lighter, completely free of wires, and easier to deploy.
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(b) Detection of a marmot call; rejection of other animal sounds.

Fig. 6. Behavior of the CFAR-based marmot alarm call detector.

application described in this paper is 800 lines of C code and took
about 1 week to develop within the EmStar software framework [13];
it detects marmots and triggers synchronized processing on all nodes
in the system. Because the system is built on a 32-bit Linux processor,
it has the additional resources to support rapid prototyping and
minimize early optimization. In the next section, we describe some
algorithms we have implemented and tested using this hardware.

III. A LGORITHMS

The algorithms we describe herein are not wholly novel; in fact,
the basic algorithms have all been introduced in prior work. Rather,
the novelty in this work lies in the evaluation of these algorithms
in the context of a real deployment and a real scientific application,
and in the implementation details involved in tuning the algorithms
for this application. In this section we will discuss the details of our
marmot call detection algorithm and the AML bearing estimation and
localization algorithm.

A. CFAR Event Detection

The Constant False Alarm Rate (CFAR)detection algorithm is an
on-line statistical method for identifying the bursts of energy in a
streaming signal [10]. The CFAR algorithm is based on the assump-
tion that the ambient noise can be modeled as a Gaussian distribution
N(µ, σ2). Given this assumption, we can use a smoothing filter
to compute on-line estimates̄µ and σ̄. Given these estimates, we
define a threshold valuēµ + βσ̄, or β standard deviations above the
mean energy value. Thus, if our noise model holds, any energy value
exceeding this threshold is either part of the signal, or is noise with
probability 1 − erf(β/

√
2), which diminishes rapidly withβ.

In practice, not all of the noise we would like to filter out
is Gaussian. While the Gaussian distributionis a good model for
ambient environmental noise, the noise caused by other animals and
events in the environment will not fit that model. We counter this
issue in two ways.

First, we apply a band pass filter that selects out only the frequency
range used by our target signal (in this case, marmot alarm calls),
and compute the energy metric over this band. Second, by adjusting
the parameters of the smoothing filters, we select the adaptation rate
for the noise estimator such that the model will adapt to signals that
have a less abrupt onset than our target signal.

Fig. 5 shows a block diagram of our marmot detection algorithm.
The first three stages of the data flow implement a decimation filter
and windowing operation, resulting in windows of 32 points sampled
at 24 KHz. To reduce the processing load, we only process every
fourth 32 point window. Because marmot calls are approximately
0.04 seconds long, even skipping 3/4 of the windows we are still
guaranteed to sample the marmot call. The next two stages sum
the energy over the band of interest, by computing the Discrete
Fourier Transform (DFT) and taking the magnitude of the sum of
the frequency bins corresponding to the range 2.25–3.75 KHz. Next,
this energy metric is fed into the CFAR algorithm.

The energy metric feeds into the noise estimator, gated by whether
the algorithm is currently “triggering”. Whenever the detector trig-
gers, new samples should not be added to the noise estimator until the
signal of interest has passed—otherwise, the noise estimator would
tend to adapt to the signal. In addition, there is typically a period
of reverberation after an alarm call, during which the signal levels
are higher than normal, but still below threshold. Thus, we define a
hysteresis period such that the detector will remain in the triggered
state forKmin samples after the last above-threshold sample. The
sample ranges corresponding to periods of triggering are reported as
the output of the detector.

The noise estimator itself is based on twoExponentially Weighted
Moving Average (EWMA)smoothing filters, one estimating the mean
µ, and the other estimating the varianceσ2. An EWMA is a simple
feedback function that implements a smoothing function with very
low computational complexity. The update function for a EWMA
estimatex̄ of x is



x̄t+1 = αxt + (1 − α)x̄t,

whereα is the adaptation rate parameter. The detection threshold
is then computed fromβσ̄; any sample above threshold is considered
a detection.

While this covers the “streaming” case, there are two additional
details of the algorithm: initialization and lockup detection. When
the detector starts, there is no initial noise estimate, so the threshold
cannot reliably be determined. Thus, we implement an initialization
phase in which triggering is withheld for the firstKinit samples
while the noise estimator builds a model. The second detail is
“lockup”, a condition that can occur in the event of a sudden but
permanent change in the noise level. If a permanent change in the
noise level causes the detector to trigger, the detector will never un-
trigger, because the noise estimates are not updated while triggering.
To address this, we apply a heuristic that re-initializes the detector
whenever triggering lasts for more thanKmax samples.

Fig. 6 shows the behavior of our on-line marmot call detector in
two cases. Fig. 6(a) represents a period of time in which the ambient
noise level is gradually increasing, and the mean and threshold adapt
to this change. Fig. 6(b) shows the case where a marmot call exists
and is detected. Note that other animal calls are present in the
data, but are attenuated by the band pass filter and easily rejected
by the detector. From our previous experience detecting birds, we
expected to set a much lowerβ parameter; however, after analyzing
initial recordings we found that the marmots weresurprisinglyloud—
and therefore readily detected using a high value forβ. We expect
to continue to gain more experience with this algorithm in future
deployments. We anticipate that there are a range of animal detection
applications for which it is sufficient to simply select different
parameter values. The parameter values used in our implementation
are given in the following tables.

Parameter Value

Fs 24000 Hz
FFT points 32

Window Feed 128
Frequency Bins 3,4

Parameter Value

α 0.999
β 32

Kinit 300
Kmin 40
Kmax 120

B. AML

Approximate-Maximum-Likelihood (AML) is a likelihood-based
algorithm that searches the event space for the most likely feature of
the event [14]. When the source is in the far-field of the sub-array,
the event of interest reduces to a DOA bearing estimation because the
range estimate becomes unreliable. For simplicity, we assume both
the source and the sensor array lie in the same plane (i.e., a 2-D
space) as shown in Fig. 7, although the physical configuration of the
four microphones on each node allows for a 3-D operation (which
will not be considered in the paper).

Let there beM wideband sources, each at an angleθm from the
array with the reference direction pointing to the east. The sensor
array consists ofP randomly distributed sensors, each at position
rp = [xp, yp]T . The sensors are assumed to be omni-directional and
have identical response. The array centroid position is given byrc =
1
P

∑P

p=1
rp = [xc, yc]

T . We use the array centroid as the reference
point and define a signal model based on the relative time-delays from
this position. The relative time-delay of themth source is given by
t
(m)
cp = t

(m)
c − t

(m)
p = [(xc − xp) cos θm + (yc − yp) sin θm]/v, in

wheret
(m)
c andt

(m)
p are the absolute time-delays from themth source

Fig. 7. Far-field notations for sources, sensors, and sensorarray centroid

to the centroid and thepth sensor, respectively, andv is the speed
of propagation. In a polar coordinate system, the above relative time
delay can also be expressed ast

(m)
cp = rp cos(θm −φp)/v, whererp

and φp are the range and angle of thep sensor with respect to the
array centroid. The data received by thepth sensor at timen is then

xp(n) = ΣM
m=1S

(m)(n − t(m)
cp ) + wp(n), (1)

for n = 0, ..., N − 1, p = 1, ..., P , andm = 1, ..., M , whereN is
the length of the data vector,S(m) is themth source signal arriving
at the array centroid position,t(m)

cp is allowed to be any real-valued
number, andwp is the zero mean white Gaussian noise with variance
σ2.

For the ease of derivation and analysis, the received wideband
signal can be transformed into the frequency domain via the DFT,
where a narrowband model can be given for each frequency bin.
However, the circular shift property of the DFT has an edge effect
problem for the actual linear time shift. These finite effects become
negligible for a sufficient long data. Here, we assume the data length
N is large enough to ignore the artifact caused by the finite data
length. ForN -point DFT transformation, the array data model in the
frequency domain is given by

X(ωk) = D(ωk)S(ωk) + η(ωk), (2)

for k = 0, ..., N − 1, where the array data spectrum is
X(ωk) = [X1(ωk), ..., XP (ωk)]T , the steering matrixD(ωk) =
[d(1)(ωk), ...,d(M)(ωk)], the steering vector is given byd(m)(ωk) =

[d
(m)
1 (ωk), ..., d

(m)
P (ωk)]T , d

(m)
p = e−j2πkt

(m)
cp

/N , and the source
spectrum is given byS(ωk) = [S(1)(ωk), ..., S(m)(ωk)]T . The
noise spectrum vectorη(k) is zero mean complex white Gaussian
distributed with varianceNσ2. Note, due to the transformation to the
frequency domain,η(ωk) asymptotically approaches a Gaussian dis-
tribution by the central limit theorem even if the actual time-domain
noise has an arbitrary i.i.d. distribution (with bounded variance). This
asymptotic property in the frequency-domain provides a more reliable
noise model than the time-domain model in some practical cases.
Throughout this paper, we denote superscriptT as the transpose, and
H as the complex conjugate transpose.

The AML estimator performs the data processing in the frequency
domain. The maximum-likelihood estimation of the source DOA and
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Fig. 8. “Marmot Meadow” location at Rocky Mountain Biological Lab-
oratory, in Gothic, Colorado. The node locations correspond to the wide
deployment described in Section IV-D.

source signals is given by the following optimization criterion [14]

max
Θ,S

L(Θ,S) = min
Θ,S

N/2∑

k=1

||X(ωk) − D(ωk)S(ωk)||2, (3)

which is equivalent to a nonlinear least square problem. Using the
technique of separating variables [15], the AML DOA estimate can
be obtained by solving the following likelihood function

max
Θ

J(Θ) = max
Θ

N/2∑

k=1

tr(P(ωk,Θ)R(ωk)), (4)

where
P(ωk,Θ) = D(ωk)D†(ωk), D

† = (D(ωk)H
D(ωk))−1

D(ωk)H

is the pseudo-inverse of the steering matrixD(ωk) and R(ωk) =
X(ωk)X(ωk)H is the one snapshot covariance matrix. Once the
AML estimate of Θ is found, the estimated source spectrum can
be given by

Ŝ
ML(ωk) = D

†(ωk, Θ̂ML)X(ωk). (5)

The AML algorithm performs signal separation by utilizing the
physical separation of the sources, and for each source signal, the
Signal to Interference-plus-Noise Ratio (SINR) is maximized in the
ML sense. Note that no closed-form solution can be obtained in
eq. (4). In the multiple sources case, the computational complexity
of the AML algorithm requires multi-dimensional search, which is
much higher than the MUSIC type algorithm that requires only 1-
D search. Various numerical solutions were proposed to obtain the
AML estimate. These include the Alternating Projection (AP), Gauss-
Newton (GN) and Conjugate-Gradient (CG). For detail derivation of
these methods see [16].

IV. EXPERIMENTS

In this section we will describe a series of experiments we
performed July 15–20, 2006 at the Rocky Mountain Biological
Laboratory (RMBL), in Gothic, CO. In these tests, we deployed 6
nodes in several locations at RMBL where marmots are normally
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present. One of these, “Marmot Meadow”, is shown in Fig. 8. We
tested the performance of our CFAR-based marmot detector and
the AML-based source localization under realistic field conditions,
detecting real animals as sources. We also performed a controlled
test of the sensitivity of the AML estimator to distance and source
orientation, using pre-recorded audio in the same field environment.

A. Marmot Detector Performance

To test the performance of the marmot detector, we ran the detec-
tion software on a network of 5 nodes. This software implemented the
algorithm described in Section III-A, running in real time. Whenever
a detection range was determined, that range was broadcast to all
nodes in a packet. The ENSBox’s integrated synchronized sampling
API was used by this application to synchronously record snippets
of audio corresponding to the detection range on every node in
the system. These snippets were then stored to flash for further
processing.

After the test, the results were compared with field notes taken
during the experiment. Fig. 9 shows the result of this comparison.
Several nodes detected every call present, and a few nodes reported
false positives. Node 106 was not functioning properly and only
reported false positives. As we saw in Fig. 6(b), marmot calls are
very loud and the detector had very little trouble identifying them.
In fact, most of the false positives were introduced by researchers
walking through the field manipulating the nodes.

B. DOA Accuracy Testing

Real animals move their heads while vocalizing. To assess the
consistency of DOA estimates from a single sub-array in the field
when the source’s direction changes, we conducted a series of
playback tests. The source was a marmot call broadcast from a
powered speaker (Advent 570 Powered Partner) in the same meadow
site where live marmot experiments were conducted. This speaker
reproduces the calls faithfully, though at a significantly lower volume
than marmots naturally produce.

A single node was placed as it was for the live marmot experiments,
with the sub-array raised approximately 1.5 m above ground level.
The source was aligned by eye at a bearing of approximately
180 degrees relative to the coordinate system of the sub-array. The
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Fig. 10. Results from a set of controlled DOA experiments in the field. A
speaker was placed on the ground in a meadow at a set of specifieddistances
(12.5 m, 25 m, and 50 m), and oriented to face either towards, perpendicular,
or away from the array. 15 trials were performed in each configuration. The
results above show the 9 cases tested: each row of images is a different
distance; each column a different facing of the source speaker. In each image,
a row represents a separate trial, showing the likelihood metric as a function
of angles.

source marmot call was repeated 15 times during each playback
experiment.

The playback was repeated with the source at three different
distances from the sub-array: 12.5 m, 25 m, and 50 m. We also
rotated the direction the source speaker was facing to test any possible
effect that may have, since marmots often turn their heads between or
even during a call. Three speaker facings were done at each distance:
pointing directly at the sub-array, pointing perpendicular to the sub-
array, and pointing away from the sub-array.

We applied the AML algorithm to a 0.07 second section of each
marmot call, 135 trials in total. The algorithm was limited to a 1 kHz
band of frequencies centered on 3 kHz, which is a typical range
over which marmot calls have their maximum power. The results are
shown in figure 10, where each subplot shows the AML estimates at
each bearing for a different experimental condition. The side lobes
common in all the figures are due to the array geometry effects
explained in section II-B. The peculiar side lobes such as in trial
6 at 12.5 m are due to background noises, especially white-crowned
sparrows whose calls overlap marmot calls in frequency.

Figure 11 shows the statistical distribution of DOA estimates (the
bearing with the maximum AML value for each trial). For all the
data combined, the mean DOA estimate is173.55 with a standard
deviation of2.35 degrees. Distance from the source and the facing of
the source have a significant effect on precision. The dominant effect
appears to be the power of the signal arriving at the sub-array. As
distance increases, the power of the signal drops. In addition, there
is a large drop in power when the speaker faces perpendicular to or
away from the sub-array. In our experimental setup, speaker direction
caused a larger drop than distance (data not shown).

C. AML Localization in Compact Deployment

The goal of this experiment is to verify whether the system is
capable of performing source localization based on actual animal
calls in the field by performing properly all the features of node
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Fig. 11. Histograms of the maximum DOA estimates for the same data
shown in figure 10, grouped by distance and grouped by source facing. Each
plot shows meanµ ± the standard deviation and the medianm.

time synchronization, self-localization of the nodes, event detection,
and AML-based DOA bearing estimation as considered above. The
combinations of these hardware and software operations are thus
applied to real-life applications.

The setup of the array was as follows. Six sub-array nodes were
spread over a region which surrounds the “Spruce Burrow”, a location
where marmots alarm-called. Fig. 12 shows the location of Spruce
Burrow relative the sensor nodes. To align the position and orientation
of the nodes relative to the true earth, we took GPS measurements
on three nodes. Although two was sufficient, three enhanced our
confidence. Fig. 12 was made by assuming node 110 position, and
the orientation from node 110 to 108 are accurate. The GPS positions
were then translated and oriented to fit the self localization positions
based on these assumptions. On each line the top numbers is the
distance based on GPS coordinate, and the bottom is based on self
localization. The difference is well within the GPS accuracy in the
open field, which are about 3 meters.

The position of the source is estimated using a pseudo-likelihood
map. Each node runs the AML algorithm on the marmot calls to
produce the bearing likelihood. Then, each position in a pseudo-
likelihood map is generated by summing the bearing log-likelihood
values that point to that position. The estimate was chosen based on
the most likely position. Fig. 13 displays the pseudo-likelihood map
with the bearing likelihood of each node in a polar coordinate.

In this experiment, error analysis is difficult to address. The
marmots rarely call at the same location, and their position when
making the calls is difficult to precisely record. In this case we only
know that a marmot was observed nearby the burrow. The least
precise localization of the points in this figure is that of Spruce
Burrow, because of difficulties getting good GPS locations in the
woods. Nonetheless, the estimate of location in Fig. 13 is near the
GPS measure we obtained at Spruce Burrow, and all the main lobes
are pointing at the same directions. This suggests that the GPS
measure we obtained actually is accurate. More analysis can only
be done if caller localization can be improved by ground truth, or
if the marmot doesn’t move while making several calls; this is what
happened next.



D. AML Localization, Wide Deployment

In this experiment, our goal was to investigate the limiting capa-
bility of the system by stretching the array as large as the wireless
link allows while performing the same task.

The array setup was similar to the compact deployment experiment
except the distance between nodes was much greater. The longest
distance was from node 104 to node 106 (143.6 meters). In order
to validate the self-localization results, we also used a tape measure
to record the distance from nodes 100-104, and four GPS readings:
node 100, 104, 108, and Spruce Burrow.

Fig. 14 displays the node positions according to both self-
localization and GPS coordinates, by aligning the corresponding
points for nodes 100 and 104. In this analysis we encountered an
interesting problem: as the graph clearly shows, the GPS and self-
localization results show a discrepancy in which the position of
node 108 differs by 10 meters. Unfortunately, this problem was not
discovered until we had packed up the equipment and left the field
location, so we could not collect additional GPS data. At first, this
might seem like a fatal error. However, because the self-localization
results are derived from an over-constrained system, we were able to
produce a convincing argument that the GPS value for node 108 was
flawed.

The graph in Fig. 14 shows the distances between the GPS points,
which can be compared to the distances between the points in the
self-calibration solution. From this we see that while the distances
100-104 and 104-108 are within 1 meter, the distance 100-108
reports 10 meters shorter in the GPS data compared with the range
measured from the acoustics. From this observation, we can form two
alternate hypotheses. The first hypothesis is that the acoustic range
measurement is long by 10 meters. This can happen in cases where
the line of sight path is blocked and a reflected path is acquired.
The alternate hypothesis is that the GPS position for either 108 or
100 is inaccurate, such that two legs of the triangle are relatively
accurate while the third is wrong. In this case, the most likely culprit
was 108, because of the presence of nearby trees which prevented
the GPS unit from detecting the maximum number of satellites and
possibly caused reflections.

To test these hypotheses, we analyzed the self-localization data
more carefully. First, we re-ran the original data set and examined
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the residual values from the constraint system solution. This system is
composed of 54 constraint equations, with a maximum range residual
of 6.75 cm and an average residual value of 3.2 cm. Next, supposing
that the GPS data is more accurate, we modified the source data by
editing the range for 100-108 to match the distance derived from GPS.
Re-running the system, we found that the modified system was highly
inconsistent. In the new solution, the maximum range residual was
235 cm, and the average residual was 111 cm, with 6/10 node pairs
registering large residuals. In addition, one of those high-residual
pairs was 100-104, for which our tape-measure data point already
corresponded well with the acoustic results. This result suggests that
one incorrect acoustic range would not be sufficient to explain the
discrepancy—more range errors and more nodes would need to be
involved. Given that the original dataset achieved such a high degree
of consistency, we determined that the GPS error was the more likely
hypothesis.

Based on this determination, we analyzed the rest of the data with
the assumption that 100 and 104 were accurate and dropped the GPS
data for 108. This analysis generated source estimates below and
to the right of Spruce Burrow, as shown in Fig. 14. These results
corresponded well with the reports from human observers at the site.

In this data set, the marmot was chirping in a rapid, cyclic mode,
called a bout, with one chirp every few seconds. In this type of
behavior the marmot stands still while vocalizing, although it may
move its head around to scan the surrounding area. This means we
can consider this set of data points to indicate the distribution of
errors we see from our algorithms.

To perform the estimation, we follow similar a procedure as before.
We generate the pseudo-likelihood map for each chirp and use 0.1
sec duration in processing. Each estimated position is then collected
and plotted in a scatter plot as seen in Fig. 15. The plots are arranged
in time from dark to light as shown in the colorbar on the right hand
side. The precision of the map is 0.1 meter, hence anything that falls
within the 0.1 x 0.1 square is treated as the same location. Larger
dot size indicates multiple estimates at that location. The mean and
standard deviation is shown as the square and cross hairs, and the
median is shown as triangle. The plot axis are set relative to node
104 and the mean (µ) and standard deviation (σ) are (82.1, 11.1)
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Fig. 15. Scatterplot of location estimates from the wide deployment, relative
to the position of the node 104 using all six nodes.µ = (82.1, 11.1), andσ
= (2.9, 5.6) meters.

meters and (2.9, 5.6) meters respectively.
The scatter plot has a “banana” shape that suggests the presence

of correlated errors. Examining the results from nodes 108 and 106,
we observed that the bearing likelihoods reported by these nodes
have broad, mis-shapen lobes that introduced error into the position
estimate. Fig. 16 shows time domain plots of one particular chirp
recorded at nodes 108 and 110. From these plots it is clear that the
data recorded at 110 is quite clean, whereas at 108 there was a great
deal of reverberation and cancellation. We believe that this distortion
is mainly caused by reflections from trees. Generally, nodes that are
closer to trees would be more susceptible to this problem. In addition,
nodes close to the source can contribute more dispersion because their
side-lobes are more likely to intersect near the true source location.

In Fig. 17a, we show the results of our localization after removing
data from 108 and 106. This results in a much tighter distribution,
with mean (µ) (82.6, 14.2) meters and standard deviation (σ) (1.4,
2.8) meters. Clearly there is much benefit in detecting the reverberant
conditions that yield poor results; we intend in future work to inves-
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Fig. 16. A time domain segment containing a single marmot chirp from two
nodes at different locations from the wide deployment.

tigate methods for automatically selecting the nodes that minimize
dispersion.

Fig. 17b shows a zoomed-in version of Fig. 17a. Here we see
there are two cluster of dots, one on the upper left and another on
the bottom right. Confirmations from notes revealed that there are
truly two call locations of the same marmot observed in this test
(nicknamed “Smiley Face”).

V. CONCLUSION

The ability to deploy an automated system to detect, localize,
and record animal vocalizations in the field enables a host of new
observations and approaches to biological questions. The successful
deployment of the Acoustic ENSBox based system at the Rocky
Mountain Biological Laboratory to study marmot alarm calls provides
a powerful proof of concept. Our results indicate that it is tractable
to localize marmot alarm calls to within at least a few meters, despite
a noisy and geographically rough environment.

The self-localization feature of the Acoustic ENSBox nodes is a
necessity for practical field deployment. This capability provides a
robust and high-accuracy alternative to reliance on GPS and simple
distance measurements. When combined with GPS and distance
measurements, the different measurement modes provide invaluable
error and consistency checking, as well as providing calibration to
the speed of sound and registration of the node map with respect
to global coordinates. Given the unexpected vagaries encountered in
the field and the difficulty of always checking values in real time,
independent redundant measurements are extremely valuable.

The tests of the on-line marmot detector demonstrated that
a streaming detector could be developed relatively quickly and
deployed on the ENSBox nodes without excessive optimization.
Demonstrating in-network data reduction, we showed that this de-
tector could pre-filter the data to meet the requirements of on-line
localization algorithms which cannot run streaming in real time.
Our experience also motivated the need for interactive development
in the field. We anticipate that in future deployments: (1) initially,
samples of raw data will need to be collected and analyzed, and (2)
parameters—and in some cases, algorithms—will need to be tuned
in the field in response to the particular conditions observed in the
deployment. We are currently pursuing an interactive, query-oriented
approach to these needs in the context of the WaveScope project [17].

Our controlled experiments with AML based bearing estimation
showed that pre-recorded playback tests under actual field conditions
produces results consistent to within a few degrees out to 50 m,
even though the volume of playback is significantly lower than a live
marmot call. This result is especially encouraging since in the most
extreme case with the source speaker facing away from the sub-array
50 m away, the call itself is nearly inaudible over the background
noise to the human ear.



(a) Relative to node 104. (b) Zoomed in.

Fig. 17. Scatterplot of location estimates from wide deployment after removing node 108 and 106.µ = (82.6, 14.2), andσ = (1.4, 2.8) meters.

Finally, source localization experiments of actual marmots in their
natural environment proved quite successful. Combining AML based
DOA likelihoods from multiple nodes effectively overcomes the
problem of ambiguity produced from a relatively large sub-array size.
As demonstrated by the wide deployment experiment, redundancy
provided by multiple nodes can be used to identify and exclude sub-
arrays which have especially poor data due to reverberations, multi-
path, or other practically unavoidable problems.

Continued development of this system will further reduce its size
and weight, make it more weather resistant, and increase its sensitivity
and accuracy. Upcoming field applications include further work with
marmots at RMBL to test hypotheses regarding selfishness and trust
when making and responding to alarm calls, as well as studying
tropical birds in the rainforests of Chajul, Mexico.
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Polytechnique F́ed́erale de Lausanne, 2006.

[11] L. Girod, “A self-calibrating system of distributed acoustic arrays,” Ph.D.
dissertation, Univerity of Caliornia at Los Angeles, 2005.

[12] J. Elson, L. Girod, and D. Estrin, “A wireless time-synchronized COTS
sensor platform, part i: System architecture,” inIEEE CAS Workshop on
Wireless Communications and Networking, 2002.

[13] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, and
D. Estrin, “Emstar: a software environment for developing anddeploying
wireless sensor networks,” inProceedings of the 2004 USENIX Technical
Conference. Boston, MA: USENIX Association, 2004.

[14] J. Chen, K. Yao, and R. Hudson, “Maximum-likelihood source localiza-
tion and unknown source localization estimation for wideband signals
in the near-field,”IEEE Transactions on Signal Processing, no. 8, pp.
1843–1854, 2002.

[15] I. Ziskine and M. Wax, “Maximum likelihood localizationof multiple
sources by alternating projection,”IEEE Trans. Acoustics, Speech, and
Signal Processing, vol. 36, no. 10, pp. 1553–1560, Oct. 1988.

[16] L. Yip, J. Chen, R. Hudson, and K. Yao, “Numerical implementation of
the aml algorithm for wideband doa estimation,” inProc. SPIE, Aug.
2003, pp. 164–172.

[17] L. Girod, K. Jamieson, Y. Mei, R. Newton, S. Rost, A. Thiagarajan,
H. Balakrishnan, and S. Madden, “The case for WaveScope: A signal-
oriented data stream management system (position paper),” inProceed-
ings of Third Biennial Conference on Innovative Data Systems Research
(CIDR07), 2007.


