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Abstract
Sprout is an end-to-end transport protocol for interactive
applications that desire high throughput and low delay.
Sprout works well over cellular wireless networks, where
link speeds change dramatically with time, and current
protocols build up multi-second queues in network gate-
ways. Sprout does not use TCP-style reactive conges-
tion control; instead the receiver observes the packet ar-
rival times to infer the uncertain dynamics of the network
path. This inference is used to forecast how many bytes
may be sent by the sender, while bounding the risk that
packets will be delayed inside the network for too long.

In evaluations on traces from four commercial LTE
and 3G networks, Sprout, compared with Skype, reduced
self-inflicted end-to-end delay by a factor of 7.9 and
achieved 2.2× the transmitted bit rate on average. Com-
pared with Google’s Hangout, Sprout reduced delay by a
factor of 7.2 while achieving 4.4× the bit rate, and com-
pared with Apple’s Facetime, Sprout reduced delay by a
factor of 8.7 with 1.9× the bit rate.

Although it is end-to-end, Sprout matched or outper-
formed TCP Cubic running over the CoDel active queue
management algorithm, which requires changes to cellu-
lar carrier equipment to deploy. We also tested Sprout as
a tunnel to carry competing interactive and bulk traffic
(Skype and TCP Cubic), and found that Sprout was able
to isolate client application flows from one another.

1 INTRODUCTION

Cellular wireless networks have become a dominant
mode of Internet access. These mobile networks, which
include LTE and 3G (UMTS and 1xEV-DO) services,
present new challenges for network applications, because
they behave differently from wireless LANs and from the
Internet’s traditional wired infrastructure.

Cellular wireless networks experience rapidly varying
link rates and occasional multi-second outages in one
or both directions, especially when the user is mobile.
As a result, the time it takes to deliver a network-layer
packet may vary significantly, and may include the ef-
fects of link-layer retransmissions. Moreover, these net-
works schedule transmissions after taking channel qual-
ity into account, and prefer to have packets waiting to
be sent whenever a link is scheduled. They often achieve
that goal by maintaining deep packet queues. The effect
at the transport layer is that a stream of packets expe-
riences widely varying packet delivery rates, as well as
variable, sometimes multi-second, packet delays.

Figure 1: Skype and Sprout on the Verizon LTE downlink
trace. For Skype, overshoots in throughput lead to large
standing queues. Sprout tries to keep each packet’s delay
less than 100 ms with 95% probability.
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For an interactive application such as a videoconfer-
encing program that requires both high throughput and
low delay, these conditions are challenging. If the appli-
cation sends at too low a rate, it will waste the oppor-
tunity for higher-quality service when the link is doing
well. But when the application sends too aggressively, it
accumulates a queue of packets inside the network wait-
ing to be transmitted across the cellular link, delaying
subsequent packets. Such a queue can take several sec-
onds to drain, destroying interactivity (see Figure 1).

Our experiments with Microsoft’s Skype, Google’s
Hangout, and Apple’s Facetime running over traces from
commercial 3G and LTE networks show the shortcom-
ings of the transport protocols in use and the lack of
adaptation required for a good user experience. The
transport protocols deal with rate variations in a reactive
manner: they attempt to send at a particular rate, and if
all goes well, they increase the rate and try again. They
are slow to decrease their transmission rate when the link
has deteriorated, and as a result they often create a large
backlog of queued packets in the network. When that
happens, only after several seconds and a user-visible
outage do they switch to a lower rate.

This paper presents Sprout, a transport protocol de-
signed for interactive applications on variable-quality
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networks. Sprout uses the receiver’s observed packet ar-
rival times as the primary signal to determine how the
network path is doing, rather than the packet loss, round-
trip time, or one-way delay. Moreover, instead of the tra-
ditional reactive approach where the sender’s window or
rate increases or decreases in response to a congestion
signal, the Sprout receiver makes a short-term forecast
(at times in the near future) of the bottleneck link rate
using probabilistic inference. From this model, the re-
ceiver predicts how many bytes are likely to cross the link
within several intervals in the near future with at least
95% probability. The sender uses this forecast to trans-
mit its data, bounding the risk that the queuing delay will
exceed some threshold, and maximizing the achieved
throughput within that constraint.

We conducted a trace-driven experimental evaluation
(details in §5) using data collected from four different
commercial cellular networks (Verizon’s LTE and 3G
1xEV-DO, AT&T’s LTE, and T-Mobile’s 3G UMTS).
We compared Sprout with Skype, Hangout, Facetime,
and several TCP congestion-control algorithms, running
in both directions (uplink and downlink).

The following table summarizes the average relative
throughput improvement and reduction in self-inflicted
queueing delay1 for Sprout compared with the various
other schemes, averaged over all four cellular networks
in both directions. Metrics where Sprout did not outper-
form the existing algorithm are highlighted in red:

App/protocol Avg. speedup Delay reduction
vs. Sprout (from avg. delay)

Sprout 1.0× 1.0× (0.32 s)
Skype 2.2× 7.9× (2.52 s)
Hangout 4.4× 7.2× (2.28 s)
Facetime 1.9× 8.7× (2.75 s)
Compound 1.3× 4.8× (1.53 s)
TCP Vegas 1.1× 2.1× (0.67 s)
LEDBAT 1.0× 2.8× (0.89 s)
Cubic 0.91× 79× (25 s)
Cubic-CoDel 0.70× 1.6× (0.50 s)

Cubic-CoDel indicates TCP Cubic running over the
CoDel queue-management algorithm [17], which would
be implemented in the carrier’s cellular equipment to be
deployed on a downlink, and in the baseband modem or
radio-interface driver of a cellular phone for an uplink.

We also evaluated a simplified version of Sprout,
called Sprout-EWMA, that tracks the network bitrate
with a simple exponentially-weighted moving average,

1This metric expresses a lower bound on the amount of time neces-
sary between a sender’s input and receiver’s output, so that the receiver
can reconstruct more than 95% of the input signal. We define the metric
more precisely in §5.

rather than making a cautious forecast of future packet
deliveries with 95% probability.

Sprout and Sprout-EWMA represents different trade-
offs in their preference for throughput versus delay. As
expected, Sprout-EWMA achieved greater throughput,
but also greater delay, than Sprout. It outperformed TCP
Cubic on both throughput and delay. Despite being end-
to-end, Sprout-EWMA outperformed Cubic-over-CoDel
on throughput and approached it on delay:

Protocol Avg. speedup Delay reduction
vs. Sprout-EWMA (from avg. delay)

Sprout-EWMA 1.0× 1.0× (0.53 s)
Sprout 2.0× 0.60× (0.32 s)
Cubic 1.8× 48× (25 s)
Cubic-CoDel 1.3 × 0.95× (0.50 s)

We also tested Sprout as a tunnel carrying competing
traffic over a cellular network, with queue management
performed at the tunnel endpoints based on the receiver’s
stochastic forecast about future link speeds. We found
that Sprout could isolate interactive and bulk flows from
one another, dramatically improving the performance of
Skype when run at the same time as a TCP Cubic flow.

The source code for Sprout, our wireless network trace
capture utility, and our trace-based network emulator is
available at http://alfalfa.mit.edu/ .

2 CONTEXT AND CHALLENGES

This section highlights the networking challenges in de-
signing an adaptive transport protocol on cellular wire-
less networks. We discuss the queueing and scheduling
mechanisms used in existing networks, present measure-
ments of throughput and delay to illustrate the problems,
and list the challenges.

2.1 Cellular Networks
At the link layer of a cellular wireless network, each de-
vice (user) experiences a different time-varying bit rate
because of variations in the wireless channel; these varia-
tions are often exacerbated because of mobility. Bit rates
are also usually different in the two directions of a link.
One direction may experience an outage for a few sec-
onds even when the other is functioning well. Variable
link-layer bit rates cause the data rates at the transport
layer to vary. In addition, as in other data networks, cross
traffic caused by the arrival and departure of other users
and their demands adds to the rate variability.

Most (in fact, all, to our knowledge) deployed cellu-
lar wireless networks enqueue each user’s traffic in a
separate queue. The base station schedules data trans-
missions taking both per-user (proportional) fairness and
channel quality into consideration [3]. Typically, each
user’s device is scheduled for a fixed time slice over
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which a variable number of payload bits may be sent, de-
pending on the channel conditions, and users are sched-
uled in roughly round-robin fashion. The isolation be-
tween users’ queues means that the dominant factor in
the end-to-end delay experienced by a user’s packets is
self-interaction, rather than cross traffic. If a user were to
combine a high-throughput transfer and a delay-sensitive
transfer, the commingling of these packets in the same
queue would cause them to experience the same de-
lay distributions. The impact of other users on delay
is muted. However, competing demand can affect the
throughput that a user receives.

Many cellular networks employ a non-trivial amount
of packet buffering. For TCP congestion control with
a small degree of statistical multiplexing, a good rule-
of-thumb is that the buffering should not exceed the
bandwidth-delay product of the connection. For cellular
networks where the “bandwidth” may vary by two or-
ders of magnitude within seconds, this guideline is not
particularly useful. A “bufferbloated” [9] base station at
one link rate may, within a short amount of time, be
under-provisioned when the link rate suddenly increases,
leading to extremely high IP-layer packet loss rates (this
problem is observed in one provider [16]).

The high delays in cellular wireless networks cannot
simply be blamed on bufferbloat, because there is no
single buffer size that will always work. It is also not
simply a question of using an appropriate Active Queue
Management (AQM) scheme, because the difficulties in
picking appropriate parameters are well-documented and
become harder when the available rates change quickly,
and such a scheme must be appropriate when applied to
all applications, even if they desire bulk throughput. In
§5, we evaluate CoDel [17], a recent AQM technique,
together with a modern TCP variant (Cubic, which is
the default in Linux), finding that on more than half of
our tested network paths, CoDel slows down a bulk TCP
transfer that has the link to itself.

By making changes—when possible—at endpoints in-
stead of inside the network, diverse applications may
have more freedom to choose their desired compromise
between throughput and delay, compared with an AQM
scheme that is applied uniformly to all flows.

Sprout is not a traditional congestion-control scheme,
in that its focus is directed at adapting to varying link
conditions, not to varying cross traffic that contends for
the same bottleneck queue. Its improvements over exist-
ing schemes are found when queueing delays are im-
posed by one user’s traffic. This is typically the case
when the application is running on a mobile device, be-
cause cellular network operators generally maintain a
separate queue for each customer, and the wireless link is
typically the bottleneck. An important limitation of this
approach is that in cases where these conditions don’t

hold, Sprout’s traffic will experience the same delays as
other flows.

2.2 Measurement Example
In our measurements, we recorded large swings in avail-
able throughput on mobile cellular links. Existing inter-
active transports do not handle these well. Figure 1 shows
an illustrative section of our trace from the Verizon LTE
downlink, whose capacity varied up and down by al-
most an order of magnitude within one second. From
15 to 25 seconds into the plot, and from 43 to 49 sec-
onds, Skype overshoots the available link capacity, caus-
ing large standing queues that persist for several seconds,
and leading to glitches or reduced interactivity for the
users. By contrast, Sprout works to maximize the avail-
able throughput, while limiting the risk that any packet
will wait in queue for more than 100 ms (dotted line).
It also makes mistakes (e.g., it overshoots at t = 43 sec-
onds), but then repairs them.

Network behavior like the above has motivated our
development of Sprout and our efforts to deal explicitly
with the uncertainty of future link speed variations.

2.3 Challenges
A good transport protocol for cellular wireless networks
must overcome the following challenges:

1. It must cope with dramatic temporal variations in
link rates.

2. It must avoid over-buffering and incurring high de-
lays, but at the same time, if the rate were to in-
crease, avoid under-utilization.

3. It must be able to handle outages without over-
buffering, cope with asymmetric outages, and re-
cover gracefully afterwards.

Our experimental results show that previous work
(see §6) does not address these challenges satisfactorily.
These methods are reactive, using packet losses, round-
trip delays, and in some cases, one-way delays as the
“signal” of how well the network is doing. In contrast,
Sprout uses a different signal, the observed arrival times
of packets at the receiver, over which it runs an inference
procedure to make forecasts of future rates. We find that
this method produces a good balance between through-
put and delay under a wide range of conditions.

3 THE SPROUT ALGORITHM

Motivated by the varying capacity of cellular networks
(as captured in Figure 1), we designed Sprout to com-
promise between two desires: achieving the highest pos-
sible throughput, while preventing packets from waiting
too long in a network queue.

From the transport layer’s perspective, a cellular net-
work behaves differently from the Internet’s traditional
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infrastructure in several ways. One is that endpoints can
no longer rely on packet drops to learn of unacceptable
congestion along a network path ([9]), even after delays
reach ten seconds or more. We designed Sprout not to de-
pend on packet drops for information about the available
throughput and the fullness of in-network queues.

Another distinguishing feature of cellular links is that
users are rarely subject to standing queues accumulated
by other users, because a cellular carrier generally pro-
visions a separate uplink and downlink queue for each
device in a cell. In a network where two independent
users share access to a queue feeding into a bottleneck
link, one user can inflict delays on another. No end-to-
end protocol can provide low-delay service when a net-
work queue is already full of somebody else’s packets.
But when queueing delays are largely self-inflicted, an
end-to-end approach may be possible.2

In our measurements, we found that estimating the ca-
pacity (by which we mean the maximum possible bit rate
or throughput) of cellular links is challenging, because
they do not have a directly observable rate per se. Even
in the middle of the night, when average throughput is
high and an LTE device may be completely alone in its
cell, packet arrivals on a saturated link do not follow an
observable isochronicity. This is a roadblock for packet-
pair techniques ([13]) and other schemes to measure the
available throughput.

Figure 2 illustrates the interarrival distribution of 1.2
million MTU-sized packets received at a stationary cell
phone whose downlink was saturated with these pack-
ets. For the vast majority of packet arrivals (the 99.99%
that come within 20 ms of the previous packet), the dis-
tribution fits closely to a memoryless point process, or
Poisson process, but with fat tails suggesting the impact
of channel quality-dependent scheduling, the effect of
other users, and channel outages, that yield interarrival
times between 20 ms and as long as four seconds. Such a
“switched” Poisson process produces a 1/ f distribution,
or flicker noise. The best fit is shown in the plot.3

A Poisson process has an underlying rate λ, which
may be estimated by counting the number of bits that
arrive in a long interval and dividing by the duration of
the interval. In practice, however, the rate of these cellu-
lar links varies more rapidly than the averaging interval
necessary to achieve an acceptable estimate.

Sprout needs to be able to estimate the link speed, both
now and in the future, in order to predict how many pack-
ets it is safe to send without risking their waiting in a net-

2An end-to-end approach may also be feasible if all sources run the
same protocol, but we do not investigate that hypothesis in this paper.

3We can’t say exactly why the distribution should have this shape,
but physical processes could produce such a distribution. Cell phones
experience fading, or random variation of their channel quality with
time, and cell towers attempt to send packets when a phone is at the
apex of its channel quality compared with a longer-term average.

Figure 2: Interarrival times on a Verizon LTE downlink,
with receiver stationary, fit to a 1/ f noise distribution.
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work queue for too long. An uncertain estimate of future
link speed is worth more caution than a certain estimate,
so we need to quantify our uncertainty as well as our best
guess.

We therefore treat the problem in two parts. We model
the link and estimate its behavior at any given time, pre-
serving our full uncertainty. We then use the model to
make forecasts about how many bytes the link will be
willing to transmit from its queue in the near future.
Most steps in this process can be precalculated at pro-
gram startup, meaning that CPU usage (even at high
throughputs) is less than 5% of a current Intel or AMD
PC microprocessor. We have not tested Sprout on a CPU-
constrained device or tried to optimize it fully.

3.1 Inferring the rate of a varying Poisson process
We model the link as a doubly-stochastic process, in
which the underlying λ of the Poisson process itself
varies in Brownian motion4 with a noise power of σ

(measured in units of packets per second per
√

second).
In other words, if at time t = 0 the value of λ was known
to be 137, then when t = 1 the probability distribution on
λ is a normal distribution with mean 137 and standard
deviation σ. The larger the value of σ, the more quickly
our knowledge about λ becomes useless and the more
cautious we have to be about inferring the link rate based
on recent history.

Figure 3 illustrates this model. We refer to the Poisson
process that dequeues and delivers packets as the service
process, or packet-delivery process.

The model has one more behavior: if λ = 0 (an out-
age), it tends to stay in an outage. We expect the outage’s

4This is a Cox model of packet arrivals [5, 18].
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Figure 3: Sprout’s model of the network path. A Sprout
session maintains this model separately in each direction.
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duration to follow an exponential distribution exp [−λz].
We call λz the outage escape rate. This serves to match
the behavior of real links, which do have “sticky” outages
in our experience.

In our implementation of Sprout, σ and λz have fixed
values that are the same for all runs and all networks.
(σ = 200 MTU-sized packets per second per

√
second,

and λz = 1.) These values were chosen based on prelim-
inary empirical measurements, but the entire Sprout im-
plementation including this model was frozen before we
collected our measurement 3G and LTE traces and has
not been tweaked to match them.

A more sophisticated system would allow σ and λz
to vary slowly with time to better match more- or less-
variable networks, Currently, the only parameter allowed
to change with time, and the only one we need to infer in
real time, is λ—the underlying, variable link rate.

To solve this inference problem tractably, Sprout dis-
cretizes the space of possible rates, λ, and assumes that:

• λ is one of 256 discrete values sampled uniformly
from 0 to 1000 MTU-sized packets per second (11
Mbps; larger than the maximum rate we observed).

• At program startup, all values of λ are equally prob-
able.

• An inference update procedure will run every
20 ms, known as a “tick”. (We pick 20 ms for com-
putational efficiency.)

By assuming an equal time between updates to the
probability distribution, Sprout can precompute the nor-
mal distribution with standard deviation to match the
Brownian motion per tick.

3.2 Evolution of the probability distribution on λ

Sprout maintains the probability distribution on λ in 256
floating-point values summing to unity. At every tick,
Sprout does three things:

1. It evolves the probability distribution to the current
time, by applying Brownian motion to each of the
255 values λ 6= 0. For λ = 0, we apply Brownian
motion, but also use the outage escape rate to bias
the evolution towards remaining at λ = 0.

2. It observes the number of bytes that actually came
in during the most recent tick. This step multiplies
each probability by the likelihood that a Poisson
distribution with the corresponding rate would have
produced the observed count during a tick. Suppose
the duration of a tick is τ seconds (e.g., τ = 0.02)
and k bytes were observed during the tick. Then,
Sprout updates the (non-normalized) estimate of the
probabilities F :

F(x)← Pold(λ = x)
(x · τ)k

k!
exp[−x · τ].

3. It normalizes the 256 probabilities so that they sum
to unity:

Pnew(λ = x)← F(x)
∑i F(i)

.

These steps constitute Bayesian updating of the prob-
ability distribution on the current value of λ.

One important practical difficulty concerns how to
deal with the situation where the queue is underflowing
because the sender has not sent enough. To the receiver,
this case is indistinguishable from an outage of the ser-
vice process, because in either case the receiver doesn’t
get any packets.

We use two techniques to solve this problem. First,
in each outgoing packet, the sender marks its expected
“time-to-next” outgoing packet. For a flight of several
packets, the time-to-next will be zero for all but the
last packet. When the receiver’s most recently-received
packet has a nonzero time-to-next, it skips the “obser-
vation” process described above until this timer expires.
Thus, this “time-to-next” marking allows the receiver to
avoid mistakenly observing that zero packets were de-
liverable during the most recent tick, when in truth the
queue is simply empty.

Second, the sender sends regular heartbeat packets
when idle to help the receiver learn that it is not in an
outage. Even one tiny packet does much to dispel this
ambiguity.

3.3 Making the packet delivery forecast
Given a probability distribution on λ, Sprout’s receiver
would like to predict how much data it will be safe for
the sender to send without risking that packets will be
stuck in the queue for too long. No forecast can be ab-
solutely safe, but for typical interactive applications we
would like to bound the risk of a packet’s getting queued
for longer than the sender’s tolerance to be less than 5%.
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To do this, Sprout calculates a packet delivery forecast:
a cautious estimate, at the 5th percentile, of how many
bytes will arrive at its receiver during the next eight ticks,
or 160 ms.

It does this by evolving the probability distribution for-
ward (without observation) to each of the eight ticks in
the forecast. At each tick, Sprout sums over each λ to find
the probability distribution of the cumulative number of
packets that will have been drained by that point in time.
We take the 5th percentile of this distribution as the cau-
tious forecast for each tick. Most of these steps can also
be precalculated, so the only work at runtime is to take a
weighted sum over each λ.

3.4 The control protocol
The Sprout receiver sends a new forecast to the sender
by piggybacking it onto its own outgoing packets.

In addition to the predicted packet deliveries, the fore-
cast also contains a count of the total number of bytes
the receiver has received so far in the connection or has
written off as lost. This total helps the sender estimate
how many bytes are in the queue (by subtracting it from
its own count of bytes that have been sent).

In order to help the receiver calculate this number and
detect losses quickly, the sender includes two fields in ev-
ery outgoing packet: a sequence number that counts the
number of bytes sent so far, and a “throwaway number”
that specifies the sequence number offset of the most re-
cent sent packet that was sent more than 10 ms prior.

The assumption underlying this method is that while
the network may reorder packets, it will not reorder two
packets that were sent more than 10 ms apart. Thus, once
the receiver actually gets a packet from the sender, it can
mark all bytes (up to the sequence number of the first
packet sent within 10 ms) as received or lost, and only
keep track of more recent packets.

3.5 Using the forecast
The Sprout sender uses the most recent forecast it has
obtained from the receiver to calculate a window size—
the number of bytes it may safely transmit, while en-
suring that every packet has 95% probability of clear-
ing the queue within 100 ms (a conventional standard
for interactivity). Upon receipt of the forecast, the sender
timestamps it and estimates the current queue occupancy,
based on the difference between the number of bytes it
has sent so far and the “received-or-lost” sequence num-
ber in the forecast.

The sender maintains its estimate of queue occupancy
going forward. For every byte it sends, it increments the
estimate. Every time it advances into a new tick of the 8-
tick forecast, it decrements the estimate by the amount of
the forecast, bounding the estimate below at zero pack-
ets.

Figure 4: Calculating the window sizes from the forecast.
The forecast represents the receiver’s estimate of a lower
bound (with 95% probability) on the cumulative number
of packets that will be delivered over time.
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To calculate a window size that is safe for the applica-
tion to send, Sprout looks ahead five ticks (100 ms) into
the forecast’s future, and counts the number of bytes ex-
pected to be drained from the queue over that time. Then
it subtracts the current queue occupancy estimate. Any-
thing left over is “safe to send”—bytes that we expect
to be cleared from the queue within 100 ms, even tak-
ing into account the queue’s current contents. This evolv-
ing window size governs how much the application may
transmit. Figure 4 illustrates this process schematically.

As time passes, the sender may look ahead further
and further into the forecast (until it reaches 160 ms),
even without receiving an update from the receiver. In
this manner, Sprout combines elements of pacing with
window-based flow control.

4 EXPERIMENTAL TESTBED

We use trace-driven emulation to evaluate Sprout and
compare it with other applications and protocols under
reproducible network conditions. Our goal is to capture
the variability of cellular networks in our experiments
and to evaluate each scheme under the same set of time-
varying conditions.

4.1 Saturator
Our strategy is to characterize the behavior of a cellu-
lar network by saturating its uplink and downlink at the
same time with MTU-sized packets, so that neither queue
goes empty. We record the times that packets actually
cross the link, and we treat these as the ground truth rep-
resenting all the times that packets could cross the link
as long as a sender maintains a backlogged queue.
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Figure 5: Block diagram of Cellsim
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Because even TCP does not reliably keep highly vari-
able links saturated, we developed our own tool. The Sat-
urator runs on a laptop tethered to a cell phone (which
can be used while in a car) and on a server that has a
good, low-delay (< 20 ms) Internet path to the cellular
carrier.

The sender keeps a window of N packets in flight to
the receiver, and adjusts N in order to keep the observed
RTT greater than 750 ms (but less than 3000 ms). The
theory of operation is that if packets are seeing more
than 750 ms of queueing delay, the link is not starving
for offered load. (We do not exceed 3000 ms of delay
because the cellular network may start throttling or drop-
ping packets.)

There is a challenge in running this system in two di-
rections at once (uplink and downlink), because if both
links are backlogged by multiple seconds, feedback ar-
rives too slowly to reliably keep both links saturated.
Thus, the Saturator laptop is actually connected to two
cell phones. One acts as the “device under test,” and its
uplink and downlink are saturated. The second cell phone
is used only for short feedback packets and is otherwise
kept unloaded. In our experiments, the “feedback phone”
was on Verizon’s LTE network, which provided satisfac-
tory performance: generally about 20 ms delay back to
the server at MIT.

We collected data from four commercial cellular net-
works: Verizon Wireless’s LTE and 3G (1xEV-DO /
eHRPD) services, AT&T’s LTE service, and T-Mobile’s
3G (UMTS) service.5 We drove around the greater
Boston area at rush hour and in the evening while record-
ing the timings of packet arrivals from each network,
gathering about 17 minutes of data from each. Because
the traces were collected at different times and places,
the measurements cannot be used to compare different
commercial services head-to-head.

For the device under test, the Verizon LTE and 1xEV-
DO (3G) traces used a Samsung Galaxy Nexus smart-
phone running Android 4.0. The AT&T trace used a
Samsung Galaxy S3 smartphone running Android 4.0.
The T-Mobile trace used a Samsung Nexus S smartphone
running Android 4.1.

5We also attempted a measurement on Sprint’s 3G (1xEV-DO) ser-
vice, but the results contained several lengthy outages and were not
further analyzed.

Figure 6: Software versions tested

Program Version OS Endpoints

Skype 5.10.0.116 Windows 7 Core i7 PC
Hangout as of 9/2012 Windows 7 Core i7 PC
Facetime 2.0 (1070) OS X 10.8.1 MB Pro (2.3 GHz i7),

MB Air (1.8 GHz i5)
TCP Cubic in Linux 3.2.0 Core i7 PC
TCP Vegas in Linux 3.2.0 Core i7 PC
LEDBAT in µTP Linux 3.2.0 Core i7 PC
Compound TCP in Windows 7 Core i7 PC

4.2 Cellsim
We then replay the traces in a network emulator, which
we call Cellsim (Figure 5). It runs on a PC and takes
in packets on two Ethernet interfaces, delays them for a
configurable amount of time (the propagation delay), and
adds them to the tail of a queue. Cellsim releases packets
from the head of the queue to the other network interface
according to the same trace that was previously recorded
by Saturator. If a scheduled packet delivery occurs while
the queue is empty, nothing happens and the opportunity
to delivery a packet is wasted.6

Empirically, we measure a one-way delay of about
20 ms in each direction on our cellular links (by sending
a single packet in one direction on the uplink or down-
link back to a desktop with good Internet service). All
our experiments are done with this propagation delay, or
in other words a 40 ms minimum RTT.

Cellsim serves as a transparent Ethernet bridge for a
Mac or PC under test. A second computer (which runs
the other end of the connection) is connected directly
to the Internet. Cellsim and the second computer re-
ceive their Internet service from the same gigabit Eth-
ernet switch.

We tested the latest (September 2012) real-time imple-
mentations of all the applications and protocols (Skype,
Facetime, etc.) running on separate late-model Macs or
PCs (Figure 6).

We also added stochastic packet losses to Cellsim to
study Sprout’s loss resilience. Here, Cellsim drops pack-
ets from the tail of the queue according to a specified
random drop rate. This approach emulates, in a coarse
manner, cellular networks that do not have deep packet
buffers (e.g., Clearwire, as reported in [16]). Cellsim also
includes an optional implementation of CoDel, based on
the pseudocode in [17].

4.3 SproutTunnel
We implemented a UDP tunnel that uses Sprout to carry
arbitrary traffic (e.g. TCP, videoconferencing protocols)
across a cellular link between a mobile user and a well-
connected host, which acts as a relay for the user’s Inter-

6This accounting is done on a per-byte basis. If the queue contains
15 100-byte packets, they will all be released when the trace records
delivery of a single 1500-byte (MTU-sized) packet.
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net traffic. SproutTunnel provides each flow with the ab-
straction of a low-delay connection, without modifying
carrier equipment. It does this by separating each flow
into its own queue, and filling up the Sprout window in
round-robin fashion among the flows that have pending
data.

The total queue length of all flows is limited to the re-
ceiver’s most recent estimate of the number of packets
that can be delivered over the life of the forecast. When
the queue lengths exceed this value, the tunnel endpoints
drop packets from the head of the longest queue. This
algorithm serves as a dynamic traffic-shaping or active-
queue-management scheme that adjusts the amount of
buffering to the predicted channel conditions.

5 EVALUATION

This section presents our experimental results obtained
using the testbed described in §4. We start by moti-
vating and defining the two main metrics: throughput
and self-inflicted delay. We then compare Sprout with
Skype, Facetime, and Hangout, focusing on how the
different rate control algorithms used by these systems
affect the metrics of interest. We compare against the
delay-triggered congestion control algorithms TCP Ve-
gas and LEDBAT, as well as the default TCP in Linux,
Cubic, which does not use delay as a congestion sig-
nal, and Compound TCP, the default in some versions
of Windows.

We also evaluate a simplified version of Sprout, called
Sprout-EWMA, that eliminates the cautious packet-
delivery forecast in favor of an exponentially-weighted
moving average of observed throughput. We compare
both versions of Sprout with a queue-management tech-
nique that must be deployed on network infrastructure.
We also measure Sprout’s performance in the presence
of packet loss.

Finally, we evaluate the performance of competing
flows (TCP Cubic and Skype) running over the Verizon
LTE downlink, with and without SproutTunnel.

The implementation of Sprout (including the tuning
parameters σ = 200 and λz = 1) was frozen before col-
lecting the network traces, and has not been tweaked.

5.1 Metrics
We are interested in performance metrics appropriate for
a real-time interactive application. In our evaluation, we
report the average throughput achieved and the 95th-
percentile self-inflicted delay incurred by each protocol,
based on measurement at the Cellsim.

The throughput is the total number of bits received by
an application, divided by the duration of the experiment.
We use this as a measure of bulk transfer rate.

The self-inflicted delay is a lower bound on the end-
to-end delay that must be experienced between a sender

and receiver, given observed network behavior. We de-
fine it as follows: At any point in time, we find the most
recently-sent packet to have arrived at the receiver. The
amount of time since this packet was sent is a lower
bound on the instantaneous delay that must exist between
the sender’s input and receiver’s output in order to avoid
a gap in playback or other glitch at this moment. We cal-
culate this instantaneous delay for each moment in time.
The 95th percentile of this function (taken over the entire
trace) is the amount of delay that must exist between the
input and output so that the receiver can recover 95% of
the input signal by the time of playback. We refer to this
as “95% end-to-end delay.”

For a given trace, there is a lower limit on the 95% end-
to-end delay that can be achieved even by an omniscient
protocol: one that sends packets timed to arrive exactly
when the network is ready to dequeue and transmit a
packet. This “omniscient” protocol will achieve 100% of
the available throughput of the link and its packets will
never sit in a queue. Even so, the “omniscient” proto-
col will have fluctuations in its 95% end-to-end delay,
because the link may have delivery outages. If the link
does not deliver any packets for 5 seconds, there must be
at least 5 seconds of end-to-end delay to avoid a glitch,
no matter how smart the protocol is.7

The difference between the 95% end-to-end delay
measured for a particular protocol and for an “omni-
scient” one is known as the self-inflicted delay. This is the
appropriate figure to assess a real-time interactive proto-
col’s ability to compromise between throughput and the
delay experienced by users.

To reduce startup effects when measuring the average
throughput and self-inflicted delay from an application,
we skip the first minute of each application’s run.

5.2 Comparative performance
Figure 7 presents the results of our trace-driven experi-
ments for each transport protocol. The figure shows eight
charts, one for each of the four measured networks, and
for each data transfer direction (downlink and uplink).
On each chart, we plot one point per application or pro-
tocol, corresponding to its measured throughput and self-
inflicted delay combination. For interactive applications,
high throughput and low delay (up and to the right) are
the desirable properties. The table in the introduction
shows the average of these results, taken over all the mea-
sured networks and directions, in terms of the average
relative throughput gain and delay reduction achieved by
Sprout.

7If packets are not reordered by the network, the definition becomes
simpler. At each instant that a packet arrives, the end-to-end delay is
equal to the delay experienced by that packet. Starting from this value,
the end-to-end delay increases linearly at a rate of 1 s/s, until the next
packet arrives. The 95th percentile of this function is the 95% end-to-
end delay.
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Figure 7: Throughput and delay of each protocol over the traced cellular links. Better results are up and to the right.
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We found that Sprout had the lowest, or close to the
lowest, delay across each of the eight links. On average
delay, Sprout was lower than every other protocol. On av-
erage throughput, Sprout outperformed every other pro-
tocol except for Sprout-EWMA and TCP Cubic.

We also observe that Skype, Facetime, and Google
Hangout all have lower throughput and higher delay than
the TCP congestion-control algorithms. We believe this
is because they do not react to rate increases and de-
creases quickly enough, perhaps because they are unable
to change the encoding rapidly, or unwilling for percep-
tual reasons.8 By continuing to send when the network
has dramatically slowed, these programs induce high de-
lays that destroy interactivity.

5.3 Benefits of forecasting
Sprout differs from the other approaches in two signif-
icant ways: first, it uses the packet arrival process at
the receiver as the “signal” for its control algorithm (as
opposed to one-way delays as in LEDBAT or packet
losses or round-trip delays in other protocols), and sec-
ond, it models the arrivals as a flicker-noise process
to perform Bayesian inference on the underlying rate.
A natural question that arises is what the benefits of
Sprout’s forecasting are. To answer this question, we de-
veloped a simple variant of Sprout, which we call Sprout-
EWMA. Sprout-EWMA uses the packet arrival times,
but rather than do any inference with that data, simply
passes them through an exponentially-weighted moving
average (EWMA) to produce an evolving smoothed rate
estimate. Instead of a cautious “95%-certain” forecast,
Sprout-EWMA simply predicts that the link will con-
tinue at that speed for the next eight ticks. The rest of
the protocol is the same as Sprout.

The Sprout-EWMA results in the eight charts in Fig-
ure 7 show how this protocol performs. First, it out-
performs all the methods in throughput, including recent
TCPs such as Compound TCP and Cubic. These results
also highlight the role of cautious forecasting: the self-
inflicted delay is significantly lower for Sprout compared
with Sprout-EWMA. TCP Vegas also achieves lower de-
lay on average than Sprout-EWMA. The reason is that an
EWMA is a low-pass filter, which does not immediately
respond to sudden rate reductions or outages (the tails
seen in Figure 2). Though these occur with low prob-
ability, when they do occur, queues build up and take
a significant amount of time to dissipate. Sprout’s fore-
casts provide a conservative trade-off between through-
put and delay: keeping delays low, but missing legitimate
opportunities to send packets, preferring to avoid the risk
of filling up queues. Because the resulting throughput is

8We found that the complexity of the video signal did not seem to
affect these programs’ transmitted throughputs. On fast network paths,
Skype uses up to 5 Mbps even when the image is static.

Figure 8: Average utilization and delay of each scheme.
Utilization is the average fraction of the cellular link’s
maximum capacity that the scheme achieved.
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relatively high, we believe it is a good choice for inter-
active applications. An application that is interested only
in high throughput with less of an emphasis on low delay
may prefer Sprout-EWMA.

5.4 Comparison with in-network changes
We compared Sprout’s end-to-end inference approach
against an in-network deployment of active queue man-
agement. We added the CoDel AQM algorithm [17] to
Cellsim’s uplink and downlink queue, to simulate what
would happen if a cellular carrier installed this algorithm
inside its base stations and in the baseband modems or
radio-interface drivers on a cellular phone.

The average results are shown in Figure 8. Aver-
aged across the eight cellular links, CoDel dramatically
reduces the delay incurred by Cubic, at little cost to
throughput.

Although it is purely end-to-end, Sprout’s delays are
even lower than Cubic-over-CoDel. However, this comes
at a cost to throughput. (Figures are given in the table
in the introduction.) Sprout-EWMA achieves within 6%
of the same delay as Cubic-over-CoDel, with 30% more
throughput.

Rather than embed a single throughput-delay trade-
off into the network (e.g. by installing CoDel on carrier
infrastructure), we believe it makes architectural sense
to provide endpoints and applications with such control
when possible. Users should be able to decide which
throughput-delay compromise they prefer. In this setting,
it appears achievable to match or even exceed CoDel’s
performance without modifying gateways.

5.5 Effect of confidence parameter
The Sprout receiver makes forecasts of a lower bound on
how many packets will be delivered with at least 95%
probability. We explored the effect of lowering this con-
fidence parameter to express a greater willingness that
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Figure 9: Lowering the forecast’s confidence parameter
allows greater throughput at the cost of more delay. Re-
sults on the T-Mobile 3G (UMTS) uplink:
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tolerance.

Results on one network path are shown in Figure 9.
The different confidence parameters trace out a curve
of achievable throughput-delay tradeoffs. As expected,
decreasing the amount of caution in the forecast allows
the sender to achieve greater throughput, but at the cost
of more delay. Interestingly, although Sprout achieves
higher throughput and lower delay than Sprout-EWMA
by varying the confidence parameter, it never achieves
both at the same time. Why this is—and whether Sprout’s
stochastic model can be further improved to beat Sprout-
EWMA simultaneously on both metrics—will need to be
the subject of further study.

5.6 Loss resilience
The cellular networks we experimented with all exhib-
ited low packet loss rates, but that will not be true in gen-
eral. To investigate the loss resilience of Sprout, we used
the traces collected from one network (Verizon LTE) and
simulated Bernoulli packet losses (tail drop) with two
different packet loss probabilities, 5% and 10% (in each
direction). The results are shown in the table below:

Protocol Throughput (kbps) Delay (ms)

Downlink
Sprout 4741 73
Sprout-5% 3971 60
Sprout-10% 2768 58

Uplink
Sprout 3703 332
Sprout-5% 2598 378
Sprout-10% 1163 314

As expected, the throughput does diminish in the face
of packet loss, but Sprout continues to provide good
throughput even at high loss rates. (TCP, which inter-
prets loss as a congestion signal, generally suffers unac-
ceptable slowdowns in the face of 10% each-way packet

loss.) These results demonstrate that Sprout is relatively
resilient to packet loss.

5.7 Sprout as a tunnel for competing traffic
We tested whether SproutTunnel, used as a tunnel over
the cellular link to a well-connected relay, can success-
fully isolate bulk-transfer downloads from interactive ap-
plications.

We ran two flows: a TCP Cubic bulk transfer (down-
load only) and a two-way Skype videoconference, using
the Linux version of Skype.

We compared the situation of these two flows running
directly over the emulated Verizon LTE link, versus run-
ning them through SproutTunnel over the same link. The
experiments lasted about ten minutes each.9

Direct via Sprout Change

Cubic throughput 8336 kbps 3776 kbps −55%
Skype throughput 78 kbps 490 kbps +528%
Skype 95% delay 6.0 s 0.17 s −97%

The results suggest that interactive applications can be
greatly aided by having their traffic run through Sprout
along with bulk transfers. Without Sprout to mediate, Cu-
bic squeezes out Skype and builds up huge delays. How-
ever, Sprout’s conservatism about delay also imposes a
substantial penalty to Cubic’s throughput.

6 RELATED WORK

End-to-end algorithms. Traditional congestion-
control algorithms generally do not simultaneously
achieve high utilization and low delay over paths with
high rate variations. Early TCP variants such as Tahoe
and Reno [10] do not explicitly adapt to delay (other than
from ACK clocking), and require an appropriate buffer
size for good performance. TCP Vegas [4], FAST [12],
and Compound TCP [20] incorporate round-trip delay
explicitly, but the adaptation is reactive and does not
directly involve the receiver’s observed rate.

LEDBAT [19] (and TCP Nice [21]) share our goals
of high throughput without introducing long delays, but
LEDBAT does not perform as well as Sprout. We believe
this is because of its choice of congestion signal (one-
way delay) and the absence of forecasting. Some recent
work proposes TCP receiver modifications to combat
bufferbloat in 3G/4G wireless networks [11]. Schemes
such as “TCP-friendly” equation-based rate control [7]
and binomial congestion control [1] exhibit slower trans-
mission rate variations than TCP, and in principle could
introduce lower delay, but perform poorly in the face of
sudden rate changes [2].

9In each run, Skype ended the video portion of the call once and
was restarted manually.
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Google has proposed a congestion-control
scheme [15] for the WebRTC system that uses an
arrival-time filter at the receiver, along with other
congestion signals, to decide whether a real-time flow
should increase, decrease, or hold its current bit rate. We
plan to investigate this system and assess it on the same
metrics as the other schemes in our evaluation.

Active queue management. Active queue management
schemes such as RED [8] and its variants, BLUE [6],
AVQ [14], etc., drop or mark packets using local indi-
cations of upcoming congestion at a bottleneck queue,
with the idea that endpoints react to these signals before
queues grow significantly. Over the past several years,
it has proven difficult to automatically configure the pa-
rameters used in these algorithms. To alleviate this short-
coming, CoDel [17] changes the signal of congestion
from queue length to the delay experienced by packets in
a queue, with a view toward controlling that delay, espe-
cially in networks with deep queues (“bufferbloat” [9]).

Our results show that Sprout largely holds its own with
CoDel over challenging wireless conditions without re-
quiring any gateway modifications. It is important to note
that network paths in practice have several places where
queues may build up (in LTE infrastructure, in baseband
modems, in IP-layer queues, near the USB interface in
tethering mode, etc.), so one may need to deploy CoDel
at all these locations, which could be difficult. How-
ever, in networks where there is a lower degree of isola-
tion between queues than the cellular networks we study,
CoDel may be the right approach to controlling delay
while providing good throughput, but it is a “one-size-
fits-all” method that assumes that a single throughput-
delay tradeoff is right for all traffic.

7 LIMITATIONS AND FUTURE WORK

Although our results are encouraging, there are several
limitations to our work. First, as noted in §2 and §3,
an end-to-end system like Sprout cannot control delays
when the bottleneck link includes competing traffic that
shares the same queue. If a device uses traditional TCP
outside of Sprout, the incurred queueing delay—seen by
Sprout and every flow—will be substantial.

Sprout is not a traditional congestion-control protocol,
in that it is designed to adapt to varying link conditions,
not varying cross traffic. In a cellular link where users
have their own queues on the base station, interactive
performance will likely be best when the user runs bulk
and interactive traffic inside Sprout (e.g. using Sprout-
Tunnel), not alongside Sprout. We have not evaluated the
performance of multiple Sprouts sharing a queue.

The accuracy of Sprout’s forecasts depends on
whether the application is providing offered load suffi-
cient to saturate the link. For applications that switch in-

termittently on and off, or don’t desire high throughput,
the transient behavior of Sprout’s forecasts (e.g. ramp-
up time) becomes more important. We did not evaluate
any non-saturating applications in this paper or attempt
to measure or optimize Sprout’s startup time from idle.

Finally, we have tested Sprout only in trace-based em-
ulation of eight cellular links recorded in the Boston area
in 2012. Although Sprout’s model was frozen before data
were collected and was not “tuned” in response to any
particular network, we cannot know how generalizable
Sprout’s algorithm is without more real-world testing.

In future work, we are eager to explore different
stochastic network models, including ones trained on
empirical variations in cellular link speed, to see whether
it is possible to perform much better than Sprout if a pro-
tocol has more accurate forecasts. We think it will be
worthwhile to collect enough traces to compile a stan-
dardized benchmark of cellular link behavior, over which
one could evaluate any new transport protocol.

8 CONCLUSION

This paper presented Sprout, a transport protocol for
real-time interactive applications over Internet paths that
traverse cellular wireless networks. Sprout improves on
the performance of current approaches by modeling
varying networks explicitly. Sprout has two interesting
ideas: the use of packet arrival times as a congestion
signal, and the use of probabilistic inference to make a
cautious forecast of packet deliveries, which the sender
uses to pace its transmissions. Our experiments show that
forecasting is important to controlling delay, providing
an end-to-end rate control algorithm that can react at time
scales shorter than a round-trip time.

Our experiments conducted on traces from four com-
mercial cellular networks show many-fold reductions in
delay, and increases in throughput, over Skype, Face-
time, and Hangout, as well as over Cubic, Compound
TCP, Vegas, and LEDBAT. Although Sprout is an end-
to-end scheme, in this setting it matched or exceeded the
performance of Cubic-over-CoDel, which requires mod-
ifications to network infrastructure to be deployed.
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