
The Pothole Patrol: Using a Mobile Sensor Network for
Road Surface Monitoring

Jakob Eriksson, Lewis Girod, Bret Hull,
Ryan Newton, Samuel Madden, Hari Balakrishnan
MIT Computer Science and Artificial Intelligence Laboratory

{jakob,girod,bwhull,newton,madden,hari}@csail.mit.edu

ABSTRACT
This paper investigates an application of mobile sensing: detecting
and reporting the surface conditions of roads. We describe a system
and associated algorithms to monitor this important civil infrastruc-
ture using a collection of sensor-equipped vehicles. This system,
which we call the Pothole Patrol (P2), uses the inherent mobility
of the participating vehicles, opportunistically gathering data from
vibration and GPS sensors, and processing the data to assess road
surface conditions. We have deployed P2 on 7 taxis running in the
Boston area. Using a simple machine-learning approach, we show
that we are able to identify potholes and other severe road surface
anomalies from accelerometer data. Via careful selection of train-
ing data and signal features, we have been able to build a detector
that misidentifies good road segments as having potholes less than
0.2% of the time. We evaluate our system on data from thousands
of kilometers of taxi drives, and show that it can successfully de-
tect a number of real potholes in and around the Boston area. After
clustering to further reduce spurious detections, manual inspection
of reported potholes shows that over 90% contain road anomalies
in need of repair.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:

General Terms
Algorithms, Design, Experimentation, Measurement

1. INTRODUCTION
Municipalities around the world spend millions of dollars to

maintain and repair their roadways.1 Despite this investment, few
people are happy with the quality of the roads where they live or
work. The reason is that bad roads damage vehicles, are sometimes
hazardous to drivers and pedestrians, and, at the very least, are an-
noying to drive or bike on. They are also the cause of expensive

1http://boston.bizjournals.com/boston/othercities/denver/stories/
2007/04/02/story1.html?b=1175486400%5E1438887
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lawsuits and damage claims—for example, in 2005, the state of
Michigan had more than 7,500 pothole-related damage claims filed
against it,2 and insurance companies receive more than 500,000
pothole-related claims each year.3

Keeping our roadways in good condition is a challenging prob-
lem because harsh weather, unexpected traffic load, and normal
wear and tear all degrade even well-laid roads over relatively short
periods of time (weeks to months). Because municipal budgets
are generally constrained, determining which roads need fixing be-
comes important. In addition, informing drivers of hazardous road
conditions especially at night or when lighting is poor would be a
useful feature for navigation systems. This paper seeks to address
this need.

We describe the design, implementation, and experimental eval-
uation of Pothole Patrol (P2), a mobile sensor computing system
to monitor and assess road surface conditions. P2 uses three-axis
acceleration sensors and GPS devices deployed on embedded com-
puters in cars, relying on the inherent mobility of cars to traverse
the roads being monitored. This opportunistic mobility is well-
suited to the application at hand for three reasons. First, it is cost-
effective when deployed on taxis, garbage trucks, postal vehicles,
volunteers’ cars, etc. Second, it achieves high spatial coverage with
even a small number of cars (in our data, 7 cabs are able to cover
2492 distinct kilometers during their normal driving in 10 days).
Third, it is more systematic and reliable than previous approaches
to the problem (§6) because it assesses the conditions of any road
segment using multiple drives from multiple collaborating cars.

Road surface monitoring is a problem that fundamentally re-
quires mobility to solve; it cannot easily be solved by deploying
static sensors on the roads. In addition to the sheer size of the road-
way network that would make a static sensor deployment daunting
in terms of labor and cost, road conditions are naturally sensed from
a moving entity that can measure vibrations and impulses during a
drive. Luckily, because roads deteriorate on time-scales of many
weeks, they need to be sampled at most a few times per day (or
even less). With the addition of inexpensive, easy-to-install hard-
ware, gathering sensor data for road surface monitoring becomes a
useful side-effect of normal vehicular operation.

At a high level, the operation of the P2 system is simple. Each
vehicle’s embedded device gathers three-axis acceleration data at
a high frequency (380 times per second in our implementation)
and position data once per second. On-board signal processing
software takes the vertical z-axis and sideways x-axis acceleration
samples and the reported speed, yielding a low-rate stream of of
high-probability pothole detections. The embedded node in the ve-

2http://www.detnews.com/2005/specialreport/0510/18/A01-
350197.htm
3http://www.wktv.com/special/6733696.html



hicle delivers these detections to a central server over a wireless
network, using our reliable delay-tolerant pipe mechanism, dP ipe.
The server maintains a database of detections from multiple ve-
hicles, and combines these to produce a set of “road anomalies”,
including potholes and other rough road conditions.

This simple description hides three important problems that P2

must solve. First, there are a large number of benign events, in-
cluding braking, doors being slammed, sudden swerves, etc. that
all yield high-energy acceleration signatures. In addition, there are
other road anomalies like expansion joints and railway tracks that
are even harder to distinguish from genuine potholes. The second
problem is that it can be difficult even for a human to tell whether
any given road anomaly is really a pothole that merits fixing, or just
a “bump” in the road . As a result, ground truth is hard to obtain and
requires a careful experimental method. The third problem is that
a given pothole or anomaly does not manifest the same way during
each drive over it; the values reported by the sensors depend on how
the car approached the pothole, its speed, and how the sensors are
mounted on the car. Coping with these variations requires a consis-
tent approach to mounting the sensors and developing a robust set
of features from the sensor observations.

To address these problems, we use a machine learning approach.
We begin by manually collecting a set of training data by care-
fully and repeatedly re-driving a set of roads and noting the loca-
tion of various different classes of road anomalies (potholes, rail-
road crossings, etc.) A set of training samples is extracted based on
the manually determined location of such road anomalies, and each
sample is labeled with the type of anomaly that occurred in it.

We then train a detector based on peak X and Z acceleration,
as well as the instantaneous velocity of the vehicle, to maximize
correct detections, while minimizing false positives. To improve
the robustness of the detector, we use a set of “loosely labeled”
data which is a low-effort means of extending the set of training
data to a broader set of roads. Finally, we added a clustering-based
filter, which, when run on the entire set of data from our taxis data
set, only reports those detections which occurred more than a few
times; this method allows us to filter out spurious events, which
may not be due to a road anomaly.

The contributions of this work are:

• Our system, P2, is the first (to our knowledge) mobile end-
to-end system for detecting and reporting potholes and other
road anomalies. It currently runs on a network of 7 taxis in
the Boston metropolitan area.

• We develop a pothole detection system that is able to suc-
cessfully differentiate potholes from a variety of other road
anomalies using accelerometer data recorded during normal
driving by a set of taxis. Our detector has a very low false-
positive rate for potholes, flagging less than 0.2% of samples
from good roads as potholes on our test data set.

• We show experimentally that our system, when run on 9730
(of them, 2492 unique) kilometers of real-world taxi traces,
is able to successfully identify dozens of potholes and other
anomalies. After clustering to reduce spurious detections, we
verified through manual inspection that over 90% of potholes
reported by our P2 deployment contained potholes or other
road anomalies in need of repair.

2. P2 ARCHITECTURE
In this section, we describe the software architecture of the P2

system as well as the sensors used to capture data and the and the
testbed used to evaluate it.
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Figure 1: P2 road monitoring architecture. Cars process the
raw data to produce detections, which are reported to a central
server, where clustering filters out spurious detections.

P 2 consists of a set of sensor-equipped vehicles, and a central
server, as illustrated in Figure 1. Raw sensor data is collected using
a GPS device (1 Hz) and a 380-Hz accelerometer, resulting in the
following information:

<time,location,speed,heading,3-axis
acceleration>

The first four parameters come from the GPS device and the ac-
celeration vector comes from the three-axis accelerometer. These
two data streams are combined using GPS interpolation. On-
board processing filters the combined data stream to produce high-
probability pothole detections. When network connectivity is avail-
able, the cars automatically upload their detections to a central
server, which maintains a database of detections. The central server
clusters detections based on location, and applies a minimum clus-
ter size, resulting in the final output of the system: a series of “pot-
hole” detections of varying confidence and severity.

2.1 Connectivity and Delay Tolerance
We upload detections to our central servers using opportunis-

tic WiFi connections provided by participating open WiFi access
points, or using a cellular data service, where available. Although
cellular data service offers more reliable connectivity than WiFi,
even this mode of connectivity frequently experiences pockets of
no coverage. To cope with such outages, we implemented a local
buffering and reliable transmission scheme, called dPipe. dPipe
is a conceptual extension to the UNIX pipe abstraction that al-
lows processes on separate hosts to communicate via a reliable,
delay-tolerant data stream. It is implemented using several file-
based buffers for storage, and, when connectivity is present, uses
TCP sockets to send buffered data and application-level acknowl-
edgments to ensure that all data gets written to disk.

2.2 Taxi Testbed
For our P2 deployment, we used a mobile testbed that runs on

local taxis. In exchange for some fleet management facilities,
the taxi company has allowed access to their cars for our experi-
ments. Each taxi in the testbed (which currently contains 7 cars) is
equipped with a Soekris 4801 embedded computer running Linux,
a WiFi card, a Sprint EVDO Rev A network card, an external
GPS (mounted on the roof of the car), and a 3-axis accelerometer
(mounted in the same place and with the same orientation in each
car). In our experiments, all the cars are Toyota Priuses, from sev-
eral different model years; different drivers drive different cars on
different days.

In our experiments, these taxis traveled over 2492 distinct kilo-
meters of roads in the greater Boston area and 9730 kilometers in
total. Even with only 7 cabs deployed over a period a few weeks,
174 km of road was covered with ten or more repeated passes; such
repetition improves the reliability of detecting potholes and other
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Figure 2: Distance traveled vs. total hours driven across all
taxis. The lower line represents total unique roads encountered
(discounting repeated observations of the same road).
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Figure 3: CDF of repeat-coverage of road segments. Includes
258, 021 unique road-segments each approximately 10 meters
in length.

anomalies. Figure 2 shows the total kilometers of driving against
hours of data collected. Note that for many of these hours, the cabs
are standing still. Also note that the estimated length of unique road
traversed does not count lanes going in different directions on the
same road separately. Figure 3 shows the distribution of coverage
density across all the lengths of road encountered.

3. DATA ACQUISITION
Our system depends on the accelerometer producing consistent

results for a given pothole, and on having accurate localization of
events from the on-board GPS. In this section, we describe a few
experiments we performed to validate the functioning of our sen-
sors. We also discuss how our training data was gathered.

3.1 Accelerometer Placement
One concern is that the placement of accelerometers inside the

vehicle might affect the quality of the signal. To answer this ques-
tion, we placed accelerometers in three locations inside the cabin
of a single car. Figure 4 shows the accelerometer signal for a fixed
stretch of pavement from three different mounting positions: at-
tached to the dashboard, attached to the right side of the windshield,
and attached to the embedded PC, which was not firmly attached to
the vehicle. We tested the last position because it is easy to in-

stall. The signals from the dashboard and windshield appear to be
quite similar, while the accelerometer attached to the computer pro-
duced unpredictable results. Consequently, we firmly attached the
accelerometer to the dashboard inside the car’s glove box, which is
a relatively easy location to install sensors on, and which keeps the
sensors out of the way of passengers in the cabin.
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Figure 4: These graphs show the how the accelerometer sig-
nal (z axis) varies with placement inside the car. Each graph
shows a different placement: either attached to the windshield,
dashboard, or attached to the embedded PC. We found firm at-
tachment to the dashboard generated the cleanest signal while
still being easy to install.

3.2 GPS Accuracy
GPS accuracy in our deployment is important if potholes are to

be properly located and multiple detections combined to report a
single pothole. To measure accuracy, we placed a thick metal bar
across a road, and repeatedly drove over it. For each drive, we first
identify the peak accelerometer reading r in the drive, and then
find the estimated location of the car when r occurred, using linear
interpolation between GPS readings. We found the standard devi-
ation of the positions reported for the bar to be 3.3 meters, which
is consistent with typical measurement errors from modern GPS
receivers outdoors.

3.3 Hand-labeled Training Data
We collected the hand-labeled data by repeatedly driving down

several known stretches of road in the Boston area, and continu-
ously recording raw accelerometer traces. A passenger in the car



Type Count Percentage
Smooth road (SM) 64 23%

Potholes (PH) 63 23%
Manholes (MH) 59 21%

Railroad Crossing (RC) 18 6%
Crosswalk/Exp. Joint (CWEJ) 76 27%

Table 1: Distribution of hand-labeled training data.

labeled each event encountered in real-time by pressing a key on a
laptop every time the impact of one class of event was felt. Traces
were post-processed to select out only the sample windows con-
taining a corresponding event that appeared significant, in order to
eliminate delay and inaccuracy in the human-recorded annotations.

We focused on collecting a diverse set of samples, including the
following event classes:

• Smooth road (SM): Segments of road surface that are con-
sidered smooth.

• Crosswalks and Expansion Joints (CWEJ): Crosswalks
using extra-thick paint, brick, strips of pavers, or raised dots.
Metal expansion joints in bridges and overpasses.

• Railroad Crossing (RC): Train tracks. Such crossings can
be jarring, and are sometimes confused for a disturbed road
surface.

• Potholes (PH): Missing chunks of pavement, severely sunk
in or protruding manhole covers, other significant road sur-
face anomalies.

• Manholes (MH): Manhole covers and other equipment in
the road that are nearly flush with the road surface. Moderate
cracking, sinking or bulging.

• Hard Stop (ST): A rapid deceleration, sometimes with the
familiar jerk at the end.

• Turn (TU): Turning a corner. This sometimes exhibits a
rather violent acceleration profile.

We sometimes refer to the set of classes excluding smooth road as
“road anomalies”.

For the smooth road samples we select a number of windows
from segments of data that we have manually determined to be free
of anomalies. Table 1 shows the number and distribution of dif-
ferent labels for our hand-labeled set. This data set is not intended
to be representative of the true frequencies of various classes of
roads in practice (where, for example, smooth road is much more
prevalent), but instead designed to create a diverse set of training
data.

3.4 Loosely Labeled Training Data
Relying only on carefully hand-labeled datasets severely limits

the amount of data available for training. In particular, our hand-
labeled coverage does not have a broad enough coverage of the
non-pothole types of road surfaces, resulting in a tendency to over-
report pothole detections when faced with new data. To address
this issue we collected several traces of “loosely labeled” data. A
loosely labeled dataset is one in which the types and rough fre-
quency of anomalies present in the data is known, but their exact
number and location in the trace is not. For example, a given trace
might be known to contain some distribution of manholes, expan-
sion joints, and smooth road, but no potholes.

• Storrow Dr. Heavily used four-lane parkway on the Boston
side of the Charles River with several bridges, some potholes.

• Memorial Dr. Heavily used four-lane parkway on the Cam-
bridge side of the Charles River, good condition.

• Binney St. A two-lane street with many sunk-in manholes
and sealed cracks, one pothole.

• Hwy I-93 An 8 lane interstate highway that cuts through the
center of Boston in good condition.

• Beacham St A heavily trafficked back road in very poor con-
dition.

Table 2: Loosely labeled road segments. For these roads, we
estimate number and types of event classes, but do not record
their exact location and type.

Our loosely labeled data was collected from the road segments
described in Table 2. Loosely labeled data, when used judiciously,
can be used to extend the training set and further improve detector
performance, as we will see in §5.

4. POTHOLE DETECTION ALGORITHM
In this section, we describe the algorithm we have developed to

detect road anomalies in streams of sensor data.
The intuition behind our algorithm is that anomalous road condi-

tions are reflected in features of the acceleration data. The problem
of identifying potholes from accelerometer data is challenging be-
cause of the broad variation in road conditions (e.g., various types
of road surfaces and anomalies such as potholes, manholes, curbs,
railroad crossings, and expansion joints) and driver behavior (turn-
ing, swerving, sudden braking, etc.) While most anomalies can be
characterized as high-energy events in the acceleration signal, sig-
nal energy content alone is not sufficient as a detection criterion,
because many high-energy events should not be considered road
anomalies. For example, as illustrated by the sample accelerometer
traces in Figure 5, road fixtures such as railroad crossings and ex-
pansion joints can generate significant acceleration impulses, and
high energy events can be caused by passengers when they slam
the door or drivers braking suddenly.

In P 2, acceleration data is processed as it is received by the em-
bedded computer in the vehicle. The trace is segmented into 256-
sample windows; the events we are interested in are generally of
even shorter duration. Figure 6 illustrates how these windows are
processed to detect the presence of a pothole impact. A series of
signal processing filters are then applied to this continuous stream
of windows, where each filter is designed to reject one or more non-
pothole event types. We now discuss each filtering stage in more
detail.

1. Speed: Windows in which the car is not moving, or is mov-
ing very slowly, are ignored. This stage rejects events such
as door slams, as well most curb ramps.

2. High-pass: The high-pass filter removes low-frequency
components from the acceleration signal in all the x- and z-
axes. Such components can be introduced by acceleration,
turning, veering, braking, and as well as subtle changes in
sensor orientation.

3. z-peak: Peak acceleration in the z-axis is a prime char-
acteristic of significant road anomalies, as seen in Figure
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Figure 5: Sample accelerometer traces of common event types.
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Figure 6: The pothole detector is composed of a number of
filters, each separating out a different class of event.

5. This filter rejects all windows with a peak (absolute) z-
acceleration less than a threshold tz .

4. xz-ratio: Acceleration in the x-axis can help identify road
anomalies that span the width of the road (such as railway
crossings, speed bumps and expansion joints), and therefore
impact both sides of the car equally. Assuming potholes only
impact one side of the car, a true pothole event with a large
z-peak acceleration should produce a significant peak in the
x-axis within some small time window ∆w. Compare the
“pothole” trace to the “expansion joint” trace in Figure 5.
Here the expansion joint produces a much larger peak z-
acceleration than the pothole, yet this is accompanied by a
relatively smaller x-acceleration. This filter rejects windows
where the peak x-acceleration within ∆w samples (we use
∆w = 32) from the peak z-acceleration reading, is less than
some factor tx times the peak z-acceleration.

5. speed vs. z ratio: At high speeds, even small road anomalies
can create high peak acceleration reading. This filter rejects
windows where the peak z acceleration is less than a factor
ts times the speed of travel.

4.1 Training the Detector
The last three filters are controlled through tuning parameters

t = {tz, tx, ts}, which control the thresholds for rejecting an event
as a “non-pothole”. The values of these parameters are computed
using a combined exhaustive search over a reasonable range of val-
ues for each parameter. For each set of parameter values t, we
compute the detector score s(t) = corr − incorr2. Here, corr is
the number of pothole detections reported when using t where the
training samples were in fact labeled as “pothole”, and incorr is
the number of reported pothole detections where the training sam-
ple was labeled as belonging to some other class. We use the square
of the number of incorrect detections to emphasize the importance
of minimizing false positives. The final parameter set is chosen to
maximize s(t). Since this computation can be done offline, and
is only done based on a small set of training data, computational
complexity is not a concern here. However, an iterative refinement
technique could be used to speed up this process, if required.

To improve the robustness of the detector, the training phase also
accepts traces from the loosely labeled data, which consists of en-
tire roads marked roughly with many potholes exist in each stretch
of road. By not requiring training data to be carefully extracted,
labeled and cleaned, we can dramatically increase the amount of
training data available to the classifier. In contrast with the hand-
labeled training data, loosely labeled data does not reveal exactly



where and when a pothole was encountered. This makes it difficult
to determine whether a detection is correct or not. On the other
hand, loosely labeled data does provide a clue as to how many
detections, countr to expect for a given stretch of road, r. The
following detector score function makes use of this quantitative in-
formation available in loosely labeled training data

s(t) = corr − incorr2
labeled −max(0, incorrloose − countr).

The max term ensures that no negative score is assigned until the
number of detections exceeds the expected number. While loosely
labeled training data is more plentiful than hand-labeled data, it is
also less reliable, hence the square term for errors on hand-labeled
training data, and the linear term for loosely labeled training data.

4.2 Clustering By Location
The pothole events reported by the detector are likely to include

some false positives. To improve accuracy, we require possible
events to be corroborated to be considered valid, meaning that a
cluster of at least k events happen in the same location (with a
small margin of error ∆d), while moving in the same direction.
This spatial corroboration helps filter out misclassified events that
are unrelated to spatial location (and hence are definitely not pot-
holes), such as vibrations from within the vehicle—as it is unlikely
that such events would happen multiple times in the exact same
location.

The following algorithm is used to compute clusters of pothole
detections. Starting with the location of each candidate road sur-
face anomaly detection, we first compute pairwise distances, for all
distances < ∆d. This can be done efficiently by first placing the de-
tections in a ∆d×∆d grid, and computing pairwise distances only
between detections in the same or neighboring grid cells. Clusters
are then formed by iteratively merging pairs of locations, in order
of distance, ensuring that the maximum intra cluster distance is less
than ∆t. The reported location of the cluster is defined to be the
centroid of the locations contained within it.

4.3 Blacklisting
Certain types of road anomalies may produce high-energy,

pothole-like events, yet may not represent a road surface in disre-
pair. This may include unusually shaped speed bumps, some types
of bridges, and other equipment embedded in the road. For the oc-
casional systematic error, we use a simple blacklist containing the
locations of such road anomalies, and automatically remove detec-
tions in these locations from the final report. Blacklists for railroad-
crossings, speed bumps and other well-known in-road equipment
can be automatically generated from GIS data sources. For the pur-
pose of evaluation, we did not use a blacklist.

4.4 A Note on False Negatives
There are several reasons why the absence of a detection at a

particular location may not be indicative of smooth road. First, the
error in GPS measurements (typically 5 meter median) is signifi-
cantly larger than the size of the typical pothole. Thus, it is not pos-
sible to determine, purely by GPS localization, whether the wheel
of a vehicle actually made contact with a given road anomaly. Sec-
ond, typical drivers (those who are not collecting our training data)
usually strive to avoid potholes, so the probability of hitting a road
anomaly is likely to be considerably lower than what would be ex-
pected from an unbiased distribution based on road area.

Note that although this will tend to lower the rate at which we de-
tect road surface anomalies, the process also biases our detections
toward road surface anomalies that are difficult to avoid. Thus,
those road surface anomalies that require the most urgent atten-

tion will tend to be detected sooner than those which can be safely
avoided.

5. EVALUATION
The overall goal of this evaluation is to determine the accuracy

and effectiveness with which P2 is able to detect substandard road
conditions. Evaluating P2 presented us with some rather unique
difficulties. First, detecting potholes based on their impact on the
tires of a vehicle can be difficult even for a human passenger: there
is a wide variance in the experienced impact from a single road sur-
face anomaly between drives, primarily depending on exactly how
the road surface anomaly was hit by the tire, and the speed of travel.
Second, the goal of P2 is to make use of existing moving vehicles to
scan road surfaces around the city, but since we cannot be present
in the cars as they drive, we cannot know what the experience in
the car was at the time.

Due to these limitations, we kept the goals for our detector rela-
tively modest:

• The detector must have a very low false negative rate for
smooth road. Since most roads are in fact smooth road, flag-
ging even a small percentage of smooth road as road anoma-
lies would lead to an unacceptable number of misdetections.

• False negatives for potholes and other anomalies are a lesser
concern; though we would obviously like to detect as many
potholes as possible, missing a few potholes is OK.

In this section, we evaluate P2 in four steps:

• Classification accuracy on hand-labeled data. Given the
hand-labeled dataset described in §3.3, we divide it randomly
into test and training sets. After training the detector on the
training set, we determine the detection accuracy the test set.
This procedure is repeated over many trials, and the average
detector performance is reported.

• Performance improvement using loosely labeled training
data. Using hand annotations about the overall quality of a
road, we fine-tune the detector and determine the impact on
detection accuracy on hand-labeled data.

• Performance on loosely labeled roads. Again, using the
hand annotations about overall road quality, we compare the
output of P 2 with the expected results. This allows us to
characterize the false positive rate.

• Spot-checks on uncontrolled data. Finally, we manually
spot-check each of the 48 highest-confidence detections, to
verify that the road was indeed in poor condition.

5.1 Data Sets
We use three data sets in our evaluation:

• The carefully labeled data described in §3.3.

• The loosely labeled data described in §3.4.

• Finally, the vast majority of data was recorded through op-
portunistic mobility using the taxi P2 deployment. We report
data from over 10 days of driving, covering 9730 kilometers
of road in the Boston metropolitan area.

We describe the performance of the detector on these three data
sets in the next three sections.



5.2 Performance on Labeled Data
The purpose of this part of the evaluation is to study the base-

line detection performance of P2. To this end, we randomly split
the labeled data into test and training sets, and computed the aver-
age detector performance on the test data after training the detector
using the training data. Results here are the average of 100 such
trials.

Class before after
Pothole 88.9% 92.4%

Manhole 0.3% 0.0%
Exp. Joint 2.7% 0.3%

Railroad Crossing 8.1% 7.3%

Table 3: Test data of listed class that was reported as pot-
holes by our algorithm, before and after training on additional
loosely labeled data.

Table 3 reports the performance of the detector on the labeled
data, before and after training on additional “loosely labeled” data.
Here, the percentages represent the fraction of reported potholes
that were actually of the listed class. For example, 2.7% of reported
pothole detections were actually generated by expansion joints be-
fore the additional training data. After the additional training data,
these misdetections dropped to 0.3%. These reductions are ob-
tained because we know that much of our loosely labeled data has
no manholes or expansion joints. Note that in no case do we con-
fuse smooth road for a pothole on our test data.

Some misdetections are to be expected. In particular, potholes
can usually be differentiated from from railroad crossings, expan-
sion joints, speed bumps and cross-walks, which usually create a
simultaneous impact on two wheels, resulting in a smaller X accel-
eration component. However, these are sometimes uneven or at an
angle with the road, confusing our detector. Using a GIS system,
it should be possible to filter out these detections automatically, by
rejecting potholes that are near railroad crossings or other features.

Judging from Table 3, it would appear that the false positive rate
of P 2 is 7.6%. However, the labeled training data does not reflect
the prior distribution of road anomalies over road segments. For
example, 6% of training data samples are railroad crossings, yet
only a tiny fraction of road segments contain railroad crossings.

Unfortunately, the prior distribution of road anomalies over road
segments is not known. Below, we attempt to more accurately esti-
mate the false positive rate using loosely labeled data.

5.3 Estimating the False-Positive Rate

Road # potholes #win #det. rate
Storrow Dr. few 1865 3 0.16%

Memorial Dr. few 1781 2 0.12%
Hwy I-93 few 2877 5 0.17%
Binney St some 6887 25 0.63%

Beacham St many 1643 231 14%

Table 4: Total number of detections over several passes of
known roads.

To estimate the false positive rate of the detector, we run the
detector on our set of loosely labeled traces. Table 4 summarizes
the results of this experiment. For each road, we report the assessed
condition of the road, the number of sample windows collected for
the road, the number of reported detections, and the detection rate,
being the number of detections over the total number of windows.

The first three roads are all in reasonably good shape, which is
reflected in the low detection rate for these roads. Some of the
detections on these roads may be legitimate, as even a good road
may have the occasional bad spot. This means that the detection
rate may be higher than the actual false positive rate. However,
this establishes an upper bound on the false positive rate of at most
0.15% on good roads.

The last two roads in the list have a large number of real potholes.
The results on these roads show a rough correspondence between
the assessed road quality and the detection count.

5.4 Impact of Features and Thresholds
As discussed in §4, each sample window is passed through a

series of filters before a detection is reported. In this section, we
study the effect of each of the three main filters: peak-z, xy-ratio
and speed/z-ratio. Figure 7 plots example numbers of “pothole
detections” reported for each class of training data, as the z-peak
threshold is varied. Here, the tx and ts values used were the ones
that resulted in the best score (see §4.1) for some value of tz .

Note that ideally, only the “pothole” class of training samples
should result in pothole detections.

The three graphs show the detection behavior for a combination
of 1, 2 and 3 filters respectively. We use the z-peak threshold tz

as an illustrative example; similar plots could be drawn for xz-peak
and speed vs. z-peak thresholds, but were excluded here for brevity.
In Figure 7(a), only the z-peak filter is employed. Here, expansion
joints create a large z-peak, resulting in frequent misclassification
of expansion joints as potholes. In Figure 7(b), the xz-ratio filter
is added, which discards most expansion joints due to the lack of
a large x impulse. However, to filter out all the expansion joints,
the xy-ratio filter needs a very conservative threshold, tx = 1.5,
resulting in a small number of detections overall. Finally, Figure
7(c) adds the speed vs. z ratio filter. This raises z-peak threshold
for high-speed events, discarding many high-speed expansion joint
encounters. The addition of this new filter allows the xz-ratio filter
to use a less conservative threshold, tx = 2.5, without increasing
the number of false positives. This recovers many of the potholes
that were filtered out with the more conservative tx = 1.5, which
explains the increase in detections in figure 7(c).

Thus, with the three filters operating in concert, we achieve both
a small number of mistakes, and a large number of correct detec-
tions. For our experiments on uncontrolled data, we use the param-
eter values tz,x,s that maximize the detector score on the training
data.

5.5 Performance on Uncontrolled Cab Data

Kilometers of driving 9730
Kilometers of road covered 2492

Cars used 7
Total number of windows 1400000

Number of severe road surface detections 4131
Unique pothole segments after clustering 2709

Table 5: Total data collected from cab testbed.

In this section, we look at the ability of P2 to detect anomalies
in accelerometer recordings collected from taxis during normal ser-
vice. This is a considerably larger data set, with roughly 400 mil-
lion samples, or 250 hours of driving.

The goal of these experiments is to study the performance and
accuracy of P2 under completely uncontrolled conditions. Typical
error sources under uncontrolled conditions include:
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Figure 7: Pothole detections per class for varying z-peak threshold. (a) up to and including z-peak filter, (b) up to and including
xy-ratio filter with tx = 1.5 (c) up to and including speed vs. z ratio filter, with tx = 2.5 and ts = 5.

Figure 8: Number of clusters as a function of the cluster size
threshold. 48 clusters with 4 or more members were found.

1. Drivers and passengers slamming doors as they enter or exit
the vehicle,

2. Drivers and or passengers drumming on the dashboard, or
opening the glove compartment,

3. Passengers hitting the lid of the glove compartment while
adjusting legs or luggage,

4. Unusual driving behavior, such as swerving, braking hard, or
accelerating rapidly, and finally

5. Drivers deliberately avoiding road surface anomalies.

After filtering out the majority of such events with signal pro-
cessing, the remaining uncontrolled events are rejected using the
clustering algorithm described in §4.2. We require that all detec-
tions occur in at least k = 4 traces before we report them as a
detection. Otherwise, we assume the detection is a spurious event
and do not report it. Figure 8 illustrates the rapid decrease in the
number of valid detections as the minimum cluster size threshold
is increased from 1 to 4.

This data produced road surface anomaly detections throughout
the city. Table 5 summarizes the collected data, and the results
of our clustering. Based on road surface anomaly detections, and
the performance of our detector described in §5.2, we expect that a
small fraction of these will not actually be potholes, with some frac-
tion of such misclassifications being railroad crossings and other
anomalies that can easily be eliminated without actually visiting
the road.

Figure 9: Partial map of Boston, and the 48 highest-confidence
detections returned.



To verify the accuracy of P2 on a wider range of streets and driv-
ing scenarios, and as a final quality control, we manually verified
the set of 48 returned potholes where at least 4 independent detec-
tions were made. We visited each site, and determined what, if any
class of road anomaly was present in the indicated location.

Figure 9 shows the set of detections on the map. The detections
are spread throughout the Boston metropolitan area, but biased to-
ward roads that the vehicles travel frequently, as this increases the
probability of making at least 4 detections of a given pothole. The
table below summarizes the results:

Reported detections ≥ 4× 48
Potholes 39

Sunk-in manholes 3
Railway crossings and exp. joints 4

Undetermined 2

Table 6: Spot-check results. The vast majority of detections
represented road anomalies in need of repair. Some room for
improvement remains, in particular in dealing with expansion
joints on high-speed road segments.

Figure 10: Typical small pothole with missing pavement.

Figure 11: Severely sunk-in manhole, with eroded edges. This
generated a pothole detection.

Here, potholes represent missing or severely sunk in and/or
cracked pavement, as illustrated in Figure 10. Sunk-in manholes
were badly enough sunk in and/or eroded to warrant repair, for ex-
ample Figure 11. In the railway crossings and exp. joints category,
one was a diagonal railway crossing, two were expansion joints on
a curving flyover highway segment, and 1 was a large expansion
joint on an old, high-speed bridge, shown in Figure 12. Finally, in
the “undetermined” class, the two detections near the airport were
difficult to diagnose, due to the hectic traffic situation and lack of
any space to stop and look around. However, a cursory inspection

Figure 12: Borderline expansion joint, on a high-speed bridge.
This generated a pothole detection.

(while driving) revealed no apparent potholes in these two loca-
tions.

6. RELATED WORK
This section surveys related work on road surface monitoring

and on data collection in sensor networks. P2 is different from
previous sensor networks in that it focuses on addressing the road
surface monitoring problem in depth. The algorithms and sensing
techniques we develop are also quite different from previous ap-
proaches to road surface assessment.

6.1 Road Surface Monitoring
Road conditions are a matter of public concern that have engen-

dered a number of responses from local organizations dissatisfied
with the state of their roads; solutions include: establishing “pot-
hole hot-lines”4, holding contests to report particularly bad pot-
holes5, and asking readers to contribute pictures of potholes6. We
seek a more systematic approach to the problem, but hope that this
public interest may cause volunteers to carry hardware in their cars.

Within the transportation technology industry, there has been
some interest in road surface monitoring and in mapping and mon-
itoring potholes. The current state-of-the-art in industry is to mea-
sure road surface quality using a “falling weight deflectometer”7.
These devices apply a fixed load to the road surface and measure
the distortion of the road to that load, giving an estimate of how im-
minent road surface failures are. Though these devices can give a
reasonable measure of which roads are most in need of resurfacing,
they are quite slow, as each measurement takes many seconds. Ac-
cording to the US Army Corps of Engineers [13], most states test
fewer than 700 “lane-miles” of road per year using such devices
(for reference, the New Jersey Turnpike is about 1200 lane-miles).
Thus, we believe that P2 could provide a valuable “first line of de-
fense”, alerting cities to areas that are most in need of testing and
repair.

Within the transportation research community, the most com-
monly proposed approach to road surface monitoring and pot-
hole detection involves the use of cameras. For example, Karup-
puswamy et al. [12] describe a vision-based scheme for pothole
avoidance in a mobile robot. They detect potholes by looking for

4ABC7Chicago.com: Operation Pothole: http://abclocal.
go.com/wls/story?section=traffic&id=3374965
5Contest to Find Biggest Pothole: http://www.wlns.com/
Global/story.asp?S=6347658
6Share your pothole photos online: http://www.woodtv.com/
Global/link.asp?L=228550
7For example, see http://www.dynatest.com/hardware/
fwd_hwd.htm

http://abclocal.go.com/wls/story?section=traffic&id=3374965
http://abclocal.go.com/wls/story?section=traffic&id=3374965
http://www.wlns.com/Global/story.asp?S=6347658
http://www.wlns.com/Global/story.asp?S=6347658
http://www.woodtv.com/Global/link.asp?L=228550
http://www.woodtv.com/Global/link.asp?L=228550
http://www.dynatest.com/hardware/fwd_hwd.htm
http://www.dynatest.com/hardware/fwd_hwd.htm


large (2 foot) circular objects in the field of view, which is clearly
an idealization of reality. In general, using machine vision for this
problem is unlikely to work well over the large range of road sur-
face anomalies, and is complicated by the speed at which cars move
as well as large variations in ambient lighting [14]. Recent work has
proposed the use of ground-penetrating radar to perform similar de-
tections [11]. These systems are fundamentally different from our
approach of using sensor-equipped cars for opportunistic sensing,
assessing road surface conditions over normal driving patterns and
habits, rather than using special-purpose vehicles and equipment.

There have been a few proposals for the use of accelerometers
to monitor road surfaces [1, 18], but these have been based on very
small deployments and have largely focused on only demonstrat-
ing feasibility. For example, Angelini et al. [1] describe a single-
accelerometer deployment in Worcester, MA where they use a data-
logger to record the location of a few potholes. They do not pro-
vide a systematic categorization of potholes in the whole city, or
describe methods for remote retrieval of sensor data.

Finally, there has been some work on classifying pothole sever-
ity and cataloging the types and causes of potholes. For example,
Eaton et al. [6] corroborate our findings that potholes often arise
around manholes, railroad tracks, expansion joints, and in intersec-
tions. They note that embedded metal objects cause roadway wear
as paving around them tends to be thinner and more subject to de-
cay; intersections receive more wear as cars stop and start as they
pass through.

TrafficSense is a recent project from Microsoft Research8 that
shares with the CarTel project and the P2 system the high-level idea
of using mobile nodes to sense traffic and road conditions. Rather
than using embedded nodes, TrafficSense uses GPS-enabled smart-
phones carried by drivers and triggered sensing methods to save
energy. To gather acceleration samples without requiring careful
placement, they map observed samples to known gravity, and to any
transient decelerations caused by braking (tracked by the GPS). P2

could incorporate those techniques, while TrafficSense could use
the techniques developed in this paper to assess road conditions.

6.2 Data Collection in Sensor Networks
The P2 software infrastructure is a general one for intermit-

tently connected and mobile sensor networks. The closest re-
lated work in this area includes recent efforts on mobile sensor
networks such as CarTel [10], Mobeyes [15], and participatory
sensing [2]. Like CarTel, P2 uses a delay-tolerant network stack.
Unlike CarTel’s declarative query system (ICEDB), however, P2

uses a lightweight delay-tolerant pipe abstraction (dPIPE) that al-
lows software components to be connected in a work-flow (mod-
eled after how UNIX pipes work, extended to handle intermittently
connected, distributed components). This approach allows com-
ponents written in different languages (e.g., signal processing in
WaveScript, data analysis in Perl, etc.) to be composed, and en-
ables components that reduce the amount of data to be processed to
run “in the net” on the cars. dPIPE is a simple abstraction, which
should be easy to use by anyone familiar with UNIX pipes. Such
approaches are also common in the pervasive computing commu-
nity [3, 5], where they are used to provide service discovery and
composability, sometimes in environments where users are mobile
or intermittently disconnected.

There have been a number of proposals for systems to simplify
the collection and processing of data from sensor network sys-
tems. Many of these take the form of “macroprogramming” lan-
guages, like TinyDB [16], Regions [19], Regiment [17], and Se-
8http://research.microsoft.com/research/mns/
projects/TrafficSense/

mantic Streams [20]. These approaches provide a high level lan-
guage and a compiler that attempts to place computation in a net-
work efficient way. Other approaches allow programmers to ex-
press their programs as data flow-like “tasks” that may be spread
across several different nodes in the network [7, 8, 9, 4]. P2 shares
the same motivation—hiding complexities of distribution commu-
nication and coordination in the sensor network domain—as these
high level application toolkits. The P2 architecture is different from
these previous systems, however, in that it emphasizes mobility and
intermittent connectivity as key problems that must be handled by
the architecture.

7. CONCLUSION
This paper studied an application of mobile sensing: detecting

and reporting the surface conditions of roads. We described the
P2 system and associated algorithms to monitor this important civil
infrastructure using a collection of sensor-equipped vehicles. P2

uses the inherent mobility of the participating vehicles, opportunis-
tically gathering data from vibration and GPS sensors, and pro-
cessing the data to assess road surface conditions. We deployed P2

on 7 taxis running in the Boston area. We use a signal process-
ing and machine-learning based approach, and show that P2 is well
suited to detecting adverse road conditions. Via careful selection
of training data and features, the P2 detector misidentifies road fea-
tures as having potholes less than 0.2% of the time in controlled
experiments. We also evaluated our system on data from thousands
of kilometers of “uncontrolled” taxi drives, and found that out of
reported detections, over 90% contain road anomalies in need of
repair.
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