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Abstract

This thesis describes the design, implementation, and execution of the Linear Road
benchmark for stream-based data management systems. The motivation for bench-
marking and the selection of the benchmark application are described. Test harness
implementation is discussed, as are experiences using the benchmark to evaluate the
Aurora engine. Effects of this work on the evolution of the Aurora engine are also
discussed.

Streams consist of continuous feeds of data from external data sources such as
sensor networks or other monitoring systems. Stream data management systems
execute continuous and historical queries over these streams, producing query results
in real-time. This benchmark provides a means of comparing the functionality and
performance of stream-based data management systems relative to each other and to
relational systems.

The benchmark presented is motivated by the increasing prevalence of “variable
tolling” on highway systems throughout the world. Variable tolling uses dynamically
determined factors such as congestion levels and accident proximity to calculate tolls.
Linear Road specifies a variable tolling system for a fictional urban area, including
such features as accident detection and alerts, traffic congestion measurements, toll
calculations, and ad hoc requests for travel time predictions and account balances.
This benchmark has already been adopted in the Aurora [ACC+03] and STREAM
[MWA+03] streaming data management systems.

Thesis Supervisor: Michael Stonebraker
Title: Adjunct Professor
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Chapter 1

Introduction

This thesis presents the Linear Road benchmark for stream-based data management

systems (or stream systems for short). Stream data management has become a highly

active research area and has inspired the development of prototype systems such

as Aurora [ACC+03], STREAM [MWA+03], TelegraphCQ [CCD+03] and Niagara

[CDTW00]. Up until now, there has been no way to compare the performance of

stream systems with each other, or with any relational database system adapted

to store and query streamed data. Linear Road attempts to remedy this issue by

providing a benchmark that has the following features which together comprise a

rigorous stress-test for stream data management:

• a set of continuous queries (to continuously monitor incoming data streams)

and historical queries (to query previously streamed historical data),

• high-volume data requirements, both in terms of incoming stream data (between

1000 and 10,000 incoming tuples per second) and the historical data that must

be maintained (roughly between 20 million and 200 million tuples at a time)

and

• real-time query response and historical data accuracy requirements.

Linear Road simulates an urban highway system that uses “variable tolls”: tolls

that are determined according to such dynamic factors as congestion, accident prox-
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imity and travel frequency. This benchmark is intended to serve as a stress test for

stream-based data management: specifying fixed input data schemas and workloads,

a suite of continuous and historical queries that must be supported, and perfor-

mance (i.e., query and transaction response time) requirements. The degree to which

a stream-based system can scale (as measured by the number of expressways sup-

ported, L) while satisfying these requirements serves as a basis for comparison of

stream systems to each other and to existing relational technology. We refer to a

system that can meet the performance and correctness requirements specified here,

while servicing position reports emitted from L expressways, as having an L-rating

for Linear Road.

1.1 Stream-Based Data Management Systems

Continuous query processing is a relatively new field in query processing. It deals with

the execution of queries over infinite streams of data, rather than over fixed collections

of data. Traditional query processing systems are powerful tools for examining stores

of data. Continuous query systems are similarly powerful, but focus on processing

and reacting to the data as it is collected. These systems are specially designed for

“stream processing” problems.

Stream processing problems involve input data that is coming into existence over

time. The data rate may be very high, or come in bursts. Output is calculated as soon

as the required input data is available. Output is a function of all input data available

up to the present time. Stream processing problems often make explicitly use of the

time domain of their input data. For example, calculating the maximum value seen

in the last 5 minutes. There can also be real-time requirements on processing, where

results are required within a specified amount of time after data becomes available.

A continuous query system will allow stream processing problems to be specified by

programmers, and executed efficiently.

There are many stream processing problems. For example, stock markets and

other financial systems can be treated as data sources. There are many queries that

14



one might want to execute continuously and in real-time based on stock market data.

A simple query might be as follows: Inform me within ten seconds if the percentage

change in the five-minute rolling average of stock XYZ exceeds the percentage change

in the average of the entire market. This query makes explicit use of time, and places

real-time demands on its results.

There are currently a variety of continuous query processing systems under devel-

opment in various research groups. They each offer different functionality, different

programming interfaces, and a different vocabulary. This paper will use the termi-

nology developed as part of the Aurora[ACC+03] project.

The fundamental construct in nearly all continuous query processing systems is

the stream[BW01]. The stream is a possibly infinite sequence of tuples. Streams often

represent the output of sensors, such as the location of objects or the temperature of

a room over time. Streams may also be processed data. The output of a continuous

query will itself be a stream of data. In our example, the input data from the stock

market would be a stream, as would the output from the query. Internally, the

intermediate data, such as the 5 minute rolling average of the entire market, may also

be thought of as a stream.

In Aurora, as in most systems, streams are manipulated using operators. Oper-

ators have some number of input streams and some number of output streams. The

values of the output streams depend on the values on the input streams. A simple

operator would be a filter whose output is a subset of its input selected according to

some predicate. In our example, filter will be used to select tuples where the percent

change exceeds 5%, out of a stream of tuples describing the percent change. Another

operator, aggregate, will be used to calculate the rolling average as well as the percent

change in our example. Aggregate calculates functions such as average over a subset

of its previous input data. There are several other basic operators. More special-

ized operators can be created by composing these simple operators, or by introducing

application specific operators.

Aurora queries are networks of operators, output streams feeding into input streams,

and data sources. These queries are expressed graphically. Our example query can
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Figure 1-1: Example of an Aurora Query

be seen in Figure 1-1. Input data logically flows along the arrows, and each box adds

a bit more processing. The top arc of the query calculates a total market value, then

a 5 minute rolling average of that value, and then a percent change between the last

2 averages. The bottom arc filters out just stock XYZ ’s value, and does the same

calculation. The Join box puts values from the top and bottom arcs together based

on their timestamps, so that its output tuples contain the percent change in total

market and in stock XYZ for a given time. Then the final filter just selects tuples

where the change in XYZ is 5% higher than in the whole market.

Query processing systems support many data streams and many simultaneous

queries and readers. Readers may be able to subscribe to streams of intermediate

values. Such systems may eliminate common sub-queries and do other optimizations

with stored data for windowed operators. They may also incorporated data from

more traditional database systems.

Aurora is a single-node stream processing engine. Given a description of an op-

erator network and a stream of input, it produces the appropriate stream of output.

Aurora makes use of efficient scheduling algorithms [CCR+03] and techniques such as

load shedding [TCZ+03] to achieve high performance. The load shedding functionality

was not tested in this work, only the operator set and the scheduling.

Aurora has a default operator set which can be augmented with application specific

operators. The default operator set at the time of this implementation is described

in [ACC+03].
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1.2 Benchmarking

This thesis attempts to define a useful benchmark for streaming databases. There

is much history of benchmarking in the database community. For a discussion of

previous work in benchmarking, see Chapter 7. Benchmarking allows users and de-

signers of databases to compare performance between different software and hardware

systems. Comparisons are important both for researchers evaluating designs and for

consumers deploying systems. A good benchmark will greatly simplify a consumers

choice of database system, and will help designers to build the kinds of systems that

consumers desire.

According to Jim Gray, in his Benchmark Handbook [Gra93], a good benchmark

will display four important qualities:

Relevant It must measure the peak performance and price/performance of systems

when performing typical operations within that problem domain.

Portable It should be easy to implement the benchmark on many different systems

and architectures.

Scalable The benchmark should apply to small and large computer systems. It

should be possible to scale the benchmark up to larger systems, and to parallel

computer systems as computer performance and architecture evolve.

Simple The benchmark must be understandable, otherwise it will lack credibility.

As this thesis presents a new benchmark for a new kind of database system, these

four criteria will be a guide.

1.3 Organization

The next chapter presents an overview of the Linear Road benchmark and some of the

high-level design choices. Chapter 3 describes the precise specification of the bench-

mark requirements. Chapter 4 discusses the implementation of the benchmarking test

17



harness. Experiences implementing the queries on the Aurora streaming database are

found in chapter 5. Chapter 6 summarizes performance measurements from existing

implementations. Related work is discussed in Chapter 7. Conclusions are drawn in

Chapter 8.
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Chapter 2

Overview of Linear Road

Benchmark

2.1 Application-Level Benchmarking

An ideal benchmark will precisely define the queries to be answered by the underlying

system using a standard language. This should be the same language that end-users

will use to implement their own applications. This is important so that the benchmark

is portable between systems, and to ensure the the systems being compared offer

similar functionality.

A major challenge we faced in building a benchmark for streaming databases was

the lack of a common language for specifying queries. There is a wide open range

of languages in this space, including SQL-derivatives such as CQL [MWA+03] and

Punctuated Streams [TMS03], entirely new languages like Medusa, and fully graphical

query systems such as Aurora. Each of these languages describes a slightly different

underlying set of basic operations. As a result, it is not possible to specify precise

queries in a portable manner.

All of these systems are classified as streaming databases because they are all

trying to solve a similar class of problems in a similar way. Rather than spec-

ify the queries, our benchmark specifies the application to be implemented. This

“application-level benchmark” gives greater flexibility to implementors at the cost of
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added complexity in the benchmarking test harness. The benefit is that systems are

able to showcase their unique operator sets while retaining the ability to compare the

performance of their systems.

2.2 Variable Tolling

“Variable tolling” (also known as “congestion pricing”) [ITS02, USD03, Poo02] is be-

coming increasingly prevalent in urban settings because of its effectiveness in reducing

traffic congestion and to recent advances in microsensor technology that have made

it feasible. Traffic congestion in major metropolitan areas is an increasing problem as

expressways cannot be built fast enough to keep traffic flowing freely at peak periods.

The idea behind variable tolling is to issue tolls that vary according to time-dependent

factors such as congestion levels and accident proximity. The motivation of charging

higher tolls during peak traffic periods is to discourage vehicles from using the roads

and contributing to the congestion. Illinois, California, and Finland have pilot pro-

grams utilizing this concept. Moreover, both London and Singapore charge tolls at

peak periods to let vehicles enter the downtown area using similar reasoning.

Variable tolling depends on the deployment of microsensors that continuously

report on the positions of vehicles on monitored expressways. Continuous monitoring

of expressways can be accomplished with two different architectures:

• Smart Road, Dumb Vehicle: In this scenario, position and speed-detecting sen-

sors are embedded in the roads or roadside facilities. Vehicles carry devices

that reflect the signal from the roadside systems thereby reporting the vehicle’s

position every time it passes a predetermined position on the road.

• Dumb Road, Smart Vehicle: In this scenario, every vehicle is equipped with an

active device with a longer range that broadcasts the vehicle’s position to a data

collection network positioned at the side of the road.

Both of these architectures are being followed in the current pilots. For the purpose

of this benchmark, we will assume a dumb road, smart vehicle architecture.
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Figure 2-1: The Geometry of Linear City

2.3 Linear City

Linear Road is not intended to model a real city with all of its geographical com-

plexities (hills, rivers etc.), nor is it intended to act as a control simulation of traffic

patterns. Rather, it is intended solely as a stress test for stream data management,

and therefore we assume a simple urban area consisting of some number of fixed

length linear expressways (thereby inspiring the name, “Linear Road”), and exclud-

ing control mechanisms.

Linear City is a fictional metropolitan area that is 100 miles (176000 yards) wide

and 100 miles long. Every position in the area can be specified with one yard gran-

ularity using (x, y) coordinates starting at (0, 0) and extending to (175999, 175999),

as shown in Figure 2-1.

2.3.1 Expressways

There are 10 parallel expressways in Linear City, numbered from 0-9 and running

horizontally 10 miles apart. Each expressway is 100 miles long and 96 feet (32 yards)

wide, with 4 12-foot wide lanes in both (east and west) directions: 3 travel lanes and
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one additional 12 foot lane devoted to entrance and exit ramps. Thus, expressway

#0 occupies the rectangle identified by corner points (0, 17568) and (175999, 17599);

expressway #1 occupies the rectangle identified by corner points (0, 35168) and

(175999, 35199); and in general, expressway #i occupies the rectangle identified by

corner points (0, (i + 1) ∗ 17600− 32) and (175999, (i + 1) ∗ 17600− 1) for 0 ≤ i ≤ 9.

This is illustrated in Figure 2-1. For simplicity, there are no expressways that run

vertically.

Each expressway has 100 on-ramps and 100 off-ramps in each direction, dividing

it into 200 mile-long segments (100 eastbound and 100 westbound). The ramps are

a third of a mile long, and allow vehicles to accelerate or decelerate. The on-ramp

for a segment puts vehicles onto the segment just after the start of the segment. The

offramp comes just before the end of the segment. Thus, each segment has a total of

8 lanes which we number from 0-7:

• lane 0 refers to the westbound entrance and exit ramps,

• lanes 1-3 refer to the westbound traffic lanes,

• lanes 4-6 refer to the eastbound traffic lanes, and

• lane 7 refers to the eastbound entrance and exit ramps.

A segment(for expressway #i), and the positioning of each lane is illustrated in Figure

2-2.

2.3.2 Vehicles

There are 1,000,000 different vehicles registered in Linear City that use the express-

ways. Each registered vehicle is equipped with a sensor that reports its position as

an (x, y) coordinate on the Linear City grid every 30 seconds while it is traveling on

an entrance ramp, exit ramp or travel lane of an expressway. For the purposes of this

benchmark, we will assume sensors to accurately identify vehicle coordinates.1

1With current technology, a digital GPS that uses multiple satellites can achieve position accuracy
within 10 feet.[Gar02]
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Figure 2-2: One Segment of a Linear Road Expressway

2.3.3 Tolls

The Linear Road system automatically charges each vehicle tolls for use of the ex-

pressway. Tolls are assessed to vehicles for each segment that they travel on except

for those from which they exit the expressway. The toll assessed to a given vehicle for

traveling on a given segment is calculated at the time the vehicle first issues a position

report from the segment. By default, this toll is determined by the average speed and

number of vehicles on the segment at the time the vehicle first issues a position report

from the segment. Default tolls are overridden in cases where an accident has recently

been detected in the given segment (or a segment in close proximity downstream), or

when the driver being charged is a frequent user of the expressway system.
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Chapter 3

Specification of Linear Road

In this chapter, we provide a detailed description of the Linear Road benchmark

requirements. Running the benchmark will involve the following steps:

1. Choosing a scale factor (L) reflecting the number of expressways for which traffic

data should be generated.

2. Using the traffic simulator (set with scale factor, L) to model the traffic patterns

of Linear City, recording position data from each simulated automobile. This

process generates flat files consisting of traffic data and historical query requests

for a 3 hour period reflecting a load consistent with rush hour traffic.

3. Using the stream system driver to deliver data generated by the simulator to

the implementing system in a manner consistent with the timestamps associated

with the data by the simulator.

4. Generating a flat file containing all output tuples (with timestamps reflecting

the times of their generation) in response to the continuous and historical queries

discussed in Section 3.2.

5. Using the validation tool to check the latency and accuracy of generated output

according to the criteria specified in Section 3.3.
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The purpose of the benchmark is to determine the maximum scale factor at which

a stream data management system can run while still meeting the latency and ac-

curacy requirements specified herein. (This is known as the L-rating of the system.)

Therefore, it is assumed that the benchmark will be run with increasingly larger scale

factors until one is used for which the requirements cannot be met.

The benchmark specification is divided into three parts:

• Inputs to the System: Input data is described by its schemas in Section 3.1.1,

and the simulation tool that generates the data in Section 3.1.2.

• Outputs from the System: Outputs are defined in terms of a suite of continuous

(Section 3.2.1) and historical queries (Section 3.2.2) expected to be evaluated

over system inputs, and historical data (Section 3.2.3) that must be maintained

to satisfy these queries.

• Evaluation Criteria: Evaluation criteria are described in terms of performance

(i.e., response time) requirements in Section 3.3.1, and the validation tool that

verifies query output in Section 3.3.3.

3.1 Input

3.1.1 Input Schemas

The schemas for each input stream are summarized in Table 3.1 and described below.

For simplicity, every field in every tuple is represented with a 32-bit signed integer.

Position report tuples are emitted by vehicles every 30 seconds while on an ex-

pressway. Position reports include the following identifying data:

• Type identifies these tuples as Position Reports (for all Position Report tuples,

Type = 0).

• Time is a timestamp (as measured in seconds since the start of the simulation)

identifying the time at which the position report was emitted. The clock(s) that
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Input Tuple Schema

Position Reports (Type, Time, VID, Speed, XWay,

Mile, Offset, Lane, Dir)

Account Queries (Type, Time, VID, QID)

Expenditure Queries (Type, Time, VID, QID, XWay)

Travel Queries (Type, Time, VID, QID, XWay,

Minit, Mend, DOW, TOD)

Table 3.1: Input Tuple Schemas

perform the timestamping are assumed accurate. Hence there is no issue with

clock skew.

• VID is a vehicle identifier that uniquely identifies each vehicle registered with

Linear Road.

• Speed is an integer number of miles per hour between 0 and 100.

In addition to the identifying data, position reports contain position data. Sensor

emissions report a vehicle’s position as an (x, y) coordinate on the Linear Road grid.

To simplify the implementation of the benchmark, we assume that the traffic network

preprocesses these coordinates to produce the following fields:

• XWay (Expressway number: 0 . . . 9): Equal to b y
17600

c,

• Mile (Mile number: 0 . . . 99): Equal to b x
1760

c,

• Offset (Yards Since Last Mile Marker: 0 . . . 1759): Equal to x mod 1760,

• Lane (Travel lane: 0 . . . 7): Equal to b17599−(y mod 17600)
8

c, and

• Dir (Direction: 0 (West) or 1 (East)): Equal to bLane
4
c.

Note that fields,

(XWay, Mile, Dir)

identify a segment. Fields,

(XWay, Mile, Dir, Offset, Lane)

27



Type Fields Description

Type Type 0 = Position Report, 1 = Account Balance,
2 = Expenditure, 3 = Travel Time

Timestamp Time Seconds since start of simulation.
Vehicle ID VID (0 . . . 999,999)
Speed Speed (0 . . . 100)
Expressway # XWay (0 . . . 9)
Mile # Mile,

Minit,
Mend

(0 . . . 99)

Offset Offset (0 . . . 1759)
Lane Lane 0 = Ramp, 1 = Left, 2 = Middle, 3 = Right
Direction Dir 0 = West, 1 = East
Query ID QID (0..999,999)
Day of week DOW 0 = Sunday, 1 = Monday, . . ., 6 = Saturday
Time of day TOD (0:00 . . . 23:59)

Table 3.2: Input Field Types

identify a position: the most precise possible identifiable location for a vehicle.

The remaining three types of input tuples are issued from vehicles to trigger the

invocation of historical queries, which are described in Section 3.2.2. The specific

types associated with each field in input tuples are summarized in Table 3.2.

3.1.2 The Linear Road Simulation Tool

The Linear Road Simulation Tool consists of a simulator and a driver. The simulator

generates input data and stores it in flat files. The driver reads the flat files and deliv-

ers the data to the benchmarked system in a manner consistent with the timestamps

attached to each data tuple. In short, the simulator is concerned with the generation

of traffic data while the driver ensures that this data is presented to stream systems

with appropriate latencies.

In simulating a stream system, a distinction must be made between the time a

tuple is generated and emitted (generation time) and the time it is delivered to the

stream data management system (arrival time). Typically, the timestamp associated

with a tuple is the data generation time, as this is more semantically meaningful as re-
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flecting the time an event occurs that triggers the data emission. Our simulator/driver

distinction allows us to make one simplifying assumption in this benchmark: for all

tuples generated as inputs to the system, we assume that the generation time and

arrival time for that tuple are the same. In other words, for the purposes of this

benchmark we assume that tuples arrive to stream systems instantaneously (and we

can achieve this by having a driver that delivers tuples to a stream system in a manner

consistent with their timestamps.) While unrealistic in practice (this precludes tuples

arriving out of order, for example), the benchmark goal of gauging the performance

of stream systems is unaffected by this assumption. Throughout the remainder of

this document, we will assume the timestamp associated with a data tuple is both its

generation time and its arrival time to the stream system.

MITSIMLab

At the core of the simulation tool is the MITSIMLab traffic simulator [YK96]. This

system generates a set of vehicles and repeatedly has each complete a vehicle trip: a

journey beginning at an entry ramp on some segment and finishing at an exit ramp

on some segment that lies on the same expressway. In making a vehicle trip, a vehicle

is placed on the entrance ramp, begins reporting its position every 30 seconds and

accelerating at a rate allowed by the other traffic. It then merges onto the expressway

and moves towards its destination at a rate allowed by the traffic congestion. When

the vehicle reaches its destination, it moves to the exit ramp and decelerates. It

is assumed that a vehicle’s maximum speed on a travel lane of an expressway is

100 MPH, and that its average speed on an entrance or exit ramp is no more than

40 MPH. This ensures that a vehicle emits at least one position report from every

segment it travels in, and at least one position report from both an entrance ramp

and an exit ramp. When a vehicle leaves the exit ramp completely, it stops reporting

its position. Thus, every vehicle trip begins with a position report from an entrance

ramp and ends with a position report from an exit ramp. The simulator staggers

vehicle position reports so that at every second 1
30

of the reports for vehicles currently

on the expressway are emitted.
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Simulation Parameters

A vehicle may travel on more than one expressway during the course of the simulation,

but it will travel on only one expressway for a given vehicle trip. For each trip, the

source location of a vehicle is uniformly distributed over all of the possible entrance

ramps on the chosen expressway. The exit ramp is normally distributed with a mean

segment location in the middle of the expressway (i.e., mile #50) and with a standard

deviation of 20 miles. Hence, vehicles have an affinity for exiting in the downtown

area. Vehicles choose eastbound or westbound ramps as appropriate. Once on the

expressway, each vehicle proceeds according to a standard traffic spacing model built

into the traffic simulator. The simulator should be run for 3 hours to simulate the

traffic data that would be generated at rush hour with segment congestion averaging

200 vehicles.

At any given point in time during the simulation, there is exactly one accident on

the Linear Road expressway system. An accident is generated at a random location in

each direction on each expressway. At the moment the accident is cleared (20 minutes

after the accident occurs), another one is generated at a random location to replace

it. Traffic proceeds by the incident at a reduced speed in the remaining travel lanes.

The traffic spacing model handles this calculation. The presence of an accident on a

given segment of an expressway is relevant to the toll calculation for that and nearby

segments (see Section 3.2.1).

Generated Data

The data generated by the simulator consists of 4 streams. The primary stream

consists of position reports issued every 30 seconds by vehicles specifying their present

speed and position on the expressways. The other three event streams are historical

query requests from vehicles on the network, which query for account balances (the

Account Balance query), total expenditures for the day (the Daily Expenditure query),

or travel time predictions (the Travel Time query). Each time a vehicle issues a

position report, with 1% probability it also generates an historical query. Of the
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historical queries that can be issued, Account Balance queries account for 50%, Daily

Expenditure queries account for 10%, and Travel Time queries account for 40%. To

avoid the complication of unpredictable event delivery order, the 4 input streams are

multiplexed together as a single stream. Input tuples are padded to consist of 36

bytes divided into 9 4-byte integer fields for simplicity. The Type field can be used to

demultiplex the input into its constituent streams.

3.2 Output

Systems implementing Linear Road are expected to support two continuous and

three historical queries over input data. These queries are described in detail in

Sections 3.2.1 and 3.2.2. As well, systems are expected to manage a certain amount

of historical data to support these queries. Historical data requirements are described

in Section 3.2.3. Just as with input data, all output data produced by queries should

be uniform in size, consisting of 5 4-byte integer fields.

3.2.1 Continuous Queries

Systems implementing the Linear Road benchmark are expected to support two con-

tinuous queries over input data. The first continuous query involves calculating tolls

every time a vehicle reports a position in a new segment and alerting the driver of

this toll. The second continuous query involves detecting accidents on the expressway

and alerting affected drivers. These queries are described more thoroughly below.

Toll Calculation and Alerts: Every registered vehicle in the Linear Road system

has an associated account which specifies the the total toll charges that have been

issued to drivers of the vehicle. One of the two continuous queries required to support

the Linear Road benchmark involves calculating tolls and maintaining toll accounts.

Toll notification and toll charging constitute two different activities that occur at

different times within Linear Road. Every time a position report identifies a vehicle

as entering a new segment, a toll for that segment is calculated and the vehicle is
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notified of that toll. Every time a position report identifies a vehicle as exiting a

segment, the toll reported for that segment is charged to the vehicle’s account. Thus,

a toll calculation for one segment often is concurrent with an account being debited

for the previous segment. If the vehicle exits at the offramp of a segment, the toll for

that segment is not charged.1

A toll notification is a tuple of the form,

(Type = 0, VID, Toll, Speed).

The field, Type = 0 identifies this tuple as a toll notification, VID identifies the vehicle

being assessed the toll and to which the toll notification is sent, Toll is the toll being

charged and Speed is the average speed, as measured over all position reports emitted

in the previous 5 minutes, in the segment for which the toll is charged.

By default, a toll calculation for a segment is based on the average speed and

number of vehicles in the segment at the time (t) of the first position report that

identifies the vehicle as entering the segment. Specifically, if the average speed of

vehicles that are in the segment between times (t − 5 min) and t is greater than or

equal to 40 MPH, no toll is assessed. Otherwise, the default toll is determined by the

formula,

basetoll × (numvehicles− 150)2

where basetoll is a predetermined constant, and numvehicles is the number of vehicles

that emitted at least one position report from the segment between times (t − 1 min)

and t. The basic intuition is to raise tolls when congestion is high so as to discourage

drivers from contributing to worse congestion.

The default toll is issued for a segment unless an accident is currently being

detected within 5 segments downstream. Accident detection is discussed further

below. In the event of an accident, no toll is charged on the 5 upstream highway

segments. To encourage drivers to exit the expressway, a credit of basecredit (some

predetermined constant) is applied to the vehicle’s account if the vehicle exits the

1Thus, a driver is never assessed a toll for the last segment (mile # 99) of an expressway.
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Is the vehicle exiting the expressway?

Was there an accident in 
previous 20 min within 5 
segments upstream?

Was there an accident in 
previous 20 min within 5 
segments upstream?

Is the average speed in segment >= 40 MPH?

Has the vehicle been assessed 
at least ftmin in tolls today?

Y

N
Y

Y

Y

Y

N
N

N

N
0

0

0

- basecredit

basetoll * (numvehicles - 150)2 basetoll * (numvehicles - 150) 2

2

Figure 3-1: Toll Calculation for Linear Road

expressway in advance of the site of the accident.

Linear Road also assumes a special “frequent traveler” discount, whereby trav-

elers receive a 50% discount on all tolls issued after they have accrued ftmin (some

predetermined constant) in tolls on the same day. The accrual is from total charges

and credits applied on the given day. The discount applies only to default tolls and

therefore, for example, do not double the credit applied when a traveler exits just

before the site of an accident. A precise summary of toll calculations is shown in the

decision tree of Figure 3-1.

Toll data must be accurate to 30 seconds. In other words, every position report

must be processed and reflected in the vehicle’s account within 30 seconds of its arrival

to the stream system.

Accident Detection and Alerts: The tracking system detects an accident on a

given segment whenever two or more vehicles are stopped in that segment. A vehicle

is considered stopped if four successive 30-second readings from the same vehicle come
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Query Response Schema

Toll notifications (Type = 0, VID, Toll, Speed)

Accident notification (Type = 1, VID, XWay, Mile, Dir)

Table 3.3: Output Tuple Schemas: Continuous Queries

from the same position (i.e., the same expressway, mile #, offset, lane and direction).

Once an accident is registered, every vehicle in the 5 upstream segments at the time

of accident detection must be notified that there is a downstream accident so that

it can seek an alternate route if a credit is desired.2 Notification comes by way of a

tuple of the form,

(Type = 1, VID, XWay, Mile, Dir)

such that Type identifies this tuple as an accident alert, VID identifies the vehicle

to which the alert is sent, and XWay, Mile, and Dir identify the segment where the

accident occurred. Beyond notification, accident detection also affects toll calculations

as was discussed previously.

Table 3.3 summarizes the schemas for output data generated by the continuous

queries for Linear Road.

3.2.2 Historical Queries

Beyond continuous queries, systems implementing Linear Road must also allow vehi-

cles to issue three kinds of historical queries: a query for the balance of the account

associated with the vehicle (Account Balance), a query requesting the sum total of

expenditures for the vehicle on a given day on a given expressway (Daily Expenditure),

and a query requesting a prediction of travel time and toll charges for a specified trip

on a specified day and time (Travel Time). These queries are described in more detail

below.

2Note that vehicles that enter one of these segments after the time of accident will not be notified
of the accident but will still receive a credit for exiting prior to the accident site.
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Account Balance: A customer traveling on the expressway can request his account

balance at any time. The balance reported must be accurate through the last segment

completed (i.e. the one previous to the one he is currently in). The account balance

response must take into account all tolls which have been charged to the account

during the simulation. This historical query is triggered by the traveler issuing a

tuple of the form,

(Type = 2, Time, VID, QID),

such that Time is the time the query was issued, VID is the identifier for the vehicle

issuing the query request (and for which a balance is to be reported), and QID is a

query identifier. In response, a tuple of the form,

(Type = 3, QID, Balance)

is issued such that QID identifies the historical query this tuple answers and Balance

is the account balance of the vehicle from which the query was posed.

Daily Expenditures: Aside from cumulative balances, a traveler can also request

his total toll expenditures today for a given expressway. This historical query is

triggered by a tuple of the form,

(Type = 3, Time, VID, QID, XWay),

such that Time is the time the query was issued, VID is the identifier for the ve-

hicle issuing the query request (and for which a day’s total expenditures is to be

reported), QID is a query identifier, and XWay identifies the expressway for which a

daily expenditure report is desired. In response, a tuple of the form,

(Type = 3, QID, Expenditure)

is generated such that QID identifies the historical query this tuple answers and

Expenditure is the day’s toll expenditure for the expressway identified in the match-
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ing query tuple that triggered this response. Note that this total includes not only

tolls, but credits applied due to accidents.

Travel Time Prediction: At any time, a traveler can request a prediction as to

the travel time and total toll charge for a future journey between any two segments

on the same expressway that begins on any day at any time. This request is issued

with a tuple of the form,

(Type = 4, Time, VID, QID, XWay, Minit, Mend, DOW, TOD)

such that Time is the time the query was issued, VID is the identifier for the vehicle

issuing the query request, QID is a query identifier, XWay is the expressway upon which

the journey occurs (from mile Minit to mile Mend), and DOW (day of week) and TOD

(time of day) specify the day and time when the journey would take place.

The predicted travel time and toll charge is calculated on the basis of statistics

maintained over the previous 10 weeks for all segments involved in the journey. Given

a journey specified from segment k to k +n on expressway x, for time t on day d, the

predicted travel time is,

a =
n∑

i=0

ai,

such that

• time a0 is the time it takes to travel segment i as determined by averaging the

LAV for segment i at time t on day d over the previous 10 weeks,

• time a1 is the time it takes to travel segment i + 1 as determined by averaging

the LAV for segment i + 1 at time t + a0 on day d over the previous 10 weeks,

• time an is the time it takes to travel segment i + n as determined by averaging

the LAV for segment i + n at time t + a0 + . . . + an−1 on day d over the previous

10 weeks.

The predicted tolls for each segment should be based on the predicted times of
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travel for each segment. That is, the total predicted toll is,

b =
n∑

i=0

bi,

such that

• toll, b0, is the toll calculated according to the toll calculation rules described

in Section 3.2.1 based on the 10 week average speed and count of vehicles in

segment i at time t on day d,

• toll, b1, is the toll calculated according to the toll calculation rules described

in Section 3.2.1 based on the 10 week average speed and count of vehicles in

segment i + 1 at time t + a0 on day d,

• toll, bn, is the toll calculated according to the toll calculation rules described

in Section 3.2.1 based on the 10 week average speed and count of vehicles in

segment i at time t + a0 + . . . + an−1 on day d.

Travel and toll predictions may assume that all travel takes place on a single day and

ignore the frequent traveler discount.

Upon calculating predicted travel time and toll, the system responds with a tuple

of the form,

(Type = 4, QID, TravelTime, Toll)

such that QID identifies the historical query this tuple answers, and TravelTime and

Toll are the predicted travel time and toll charge for the vehicle journey calculated

in the manner described above.

The schema for output tuples for historical queries issued in Linear Road are

summarized in Table 3.4.

3.2.3 Historical Data

To be able to satisfy the continuous and historical queries of Linear Road, a stream

data management system must maintain a certain amount of historical data. Specif-
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Query Response Schema

Account Balance (Type = 2, QID, Balance)

Daily Expenditure (Type = 3, QID, Expenditure)

Travel Time (Type = 4, QID, TravelTime, Toll)

Table 3.4: Output Tuple Schemas: Historical Queries

ically, the system must maintain 10 weeks of statistical data about each segment on

the Linear Road expressways, as well as account and location data for every registered

vehicle. The exact historical data requirements are described below.

Segment Statistics: Systems implementing Linear Road must maintain 10 weeks

worth of statistical data for each segment on the Linear Road expressways. This data

is used for calculating tolls (Toll calculation query) and computing travel time and

toll estimates (Travel time query). The data that must be maintained for each of the

L× 200 segments includes the following.

• A count (Count) of the number of vehicles in the segment maintained with

granularity of 1 minute starting with any arbitrarily chosen time. The vehicle

count should be computed at time t by identifying the most recent message from

each vehicle as of t, assigning the vehicle to the segment in which it is located

at that time, and counting the vehicles in each segment. The arbitrarily chosen

initial time of computation need not be uniform across segments.

• The “Latest Average Velocity” (LAV) in each direction for each one-mile seg-

ment. This is computed as the average speeds of the vehicles in each segment,

and is computed every minute by averaging the speeds of all position reports

issued in the previous 5 minutes.

Note that 10 weeks of historical data at 1 minute granularity for every segment

requires maintaining

(200 · L segments)× (100, 800 minutes),
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or approximately 20L million records (for L = number of expressways being moni-

tored).

Vehicle Accounts: Systems implementing Linear Road must maintain for every

registered vehicle, its current account balance and position, as well as 10 weeks worth

of data on tolls paid per expressway. This data is used for determining current account

balances (Account Balance), daily expressway expenditures (Daily Expenditure), fre-

quent traveler discounts (Toll Calculation) and recipients of accident alerts (Accident

Detection). The data that must be maintained for each of the 1 million registered

vehicles includes the following:

• the current balance of the vehicle’s account, accurate to the last segment in

which the vehicle completed travel. This is used to respond to Account Balance

queries.

• the balance paid on each expressway today. This is used to respond to Daily

Expenditure queries, as well as to determine if a driver is eligible for a “frequent

traveler” discount on tolls calculated by the Toll Calculation query.

• the current segment where the vehicle is located. This is used to determine

which vehicles should receive alerts as a result of the Accident Detection query.

Note that current account balances and positions require 1 million records to be

maintained (1 for each vehicle), whereas daily expenditures require L records per

vehicle (one for each expressway), or L million records in all.

Accidents: Systems implementing Linear Road must keep track of all current ac-

cident locations and the times of their detection. This data is used to determine tolls

(segments in proximity to an accident issue no tolls but issue credits to vehicles that

leave the expressway), and issue accident alerts.

Query Identifiers: Every historical query request tuple includes the vehicle ID

for the driver issuing the request and a query ID for the request itself. This data
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must be maintained so that a tuple result (which includes the identifier for the issued

query) can be routed to the appropriate vehicle(s).

3.3 Evaluation Criteria

In this section, we describe the performance and accuracy requirements and validation

procedure for systems implementing Linear Road. These requirements must be met

on a single processor box running Linux, and with no more than 2.5 Ghz processing

power, 1 Gigabyte of RAM and a 512K cache. A system achieves an L-rating if it

meets these performance and correctness objectives while supporting L expressways

(0 ≤ L ≤ 9).3

3.3.1 Query Performance Requirements

The quality of service requirements by the benchmark system are summarized for all

possible system outputs in Table 3.5. A toll notification must be issued quickly so

as to allow drivers the option to exit a segment prior to being charged. Thus, the

notification must be sent within 15 seconds of the time of the position report that

alerted the system that the vehicle had entered the segment in question. Similarly,

an accident notification must be issued within 15 seconds of the position report which

leads to its detection, so as to allow drivers to exit the expressway.

Historical queries have less strict real-time requirements. Account balances are

valid provided that they are returned within a minute of their request, Daily Expen-

diture totals should be returned within a minute and a half, and a Travel Time query

should be answered within 2 minutes after the query has been issued.

3.3.2 Query Accuracy Requirements

This section presents the minimum requirements for correct values that are imposed

on a Linear Road implementation. A system that meets these requirements will

3Each expressway is simulated independently by the Simulation Tool, although a vehicle is pre-
vented from being placed on two expressways concurrently.

40



Query Performance Requirement

Toll Notifications
15 seconds from the time a vehicle reports its position
in a new segment.

Accident Notification
15 seconds from the last report establishing
two vehicles being stopped in the same position.

Account Balance 60 seconds from the time the query was issued.

Daily Expenditure 90 seconds from the time the query was issued.

Travel Time 120 seconds from the time the query was issued.

Table 3.5: Query Response Requirements

pass the validation system. The actual validation system may not check all of these

requirements, or may impose less stringent requirements. But an implementation is

still required to meet these performance and accuracy requirements.

Accuracy requirements for all historical data are given in Table 3.6. Accuracy

requirements are given in terms of a time measure specifying an “allowable staleness”.

For example, the accuracy requirement for Vehicle Positions is 30 seconds. This

means that if the vehicle v is reported as located at segment s as of time t, then

v should have emitted a position report indicating its location as s at some time

between (t − 30 sec) and t. Similarly, the account for a vehicle should be accurate

to within 60 seconds. In other words, a balance response must be correct for some

time between when a balance request query was issued and when the response was

delivered. If an accident is reported on segment s as of time t, then it should be the

case that an accident is still being cleaned up as of some time between (t − 30 sec)

and t. (I.e., the accident was determined as having occurred at some time between

(t − 20 min, 30 sec) and t). Segment data is required to be recomputed once per

minute, based on the last 5 minutes of position reports. For a position report arriving

at time t and a corresponding toll notification delivered at time t+δ, there must exist

some offset o between 0 and (60+δ) seconds such that the toll report is accurate given

the position notifications delivered between time (t+δ−o) and (t+δ−o−5 minutes).

Travel time responses (not specified in Table 3.6) are allowed a 5% margin of error,

due to the complexity of the calculation.
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Historical Data Accuracy Requirement

Vehicle Positions 30 seconds.

Vehicle Accounts 60 seconds.

Accidents 30 seconds.

Segment Statistics 60 seconds.

Table 3.6: Transaction Requirements

3.3.3 The Linear Road Validation Tool

The output of stream systems implementing Linear Road should be a flat file consist-

ing of tuples that have been be padded as necessary to occupy 20 bytes each, with

5 4-byte integer fields of which the 1st is a type (valued from 1 . . . 5) that is used to

identify the query to which the tuple is a response.

Validation involves comparing the system’s output with that generated as a ref-

erence set by the validation tool for the given input. The validation tool will read

output from the flat files generated by the stream system and check the results to see

if they meet the performance and accuracy requirements described in Section 3.3. It

is expected that most systems will produce accurate output, but will for some scale

factor, be unable to continue meeting the quality of service guidelines.
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Chapter 4

Implementation of the Linear Road

Test Harness

This section describes briefly the implementation of the test harness for the Linear

Road benchmark. The test harness includes the software which generates the test

data and queries, the program that delivers data in real-time to the implementation of

Linear Road, and the system that receives output from the system being benchmarked

and checks it for correctness.

4.1 Traffic Simulation

Traffic simulation is an important topic in transportation research. Testing new

traffic management systems on actual travellers is expensive and difficult. While data

recorded from an actual transit network may be fed to a system, this technique is

limitting. Such data cannot help to predict reactions of travellers to new information.

Also, it is not useful in modelling changes in methods of data collection.

There are two major classes of traffic simulators. Macroscopic traffic simulators

and microscopic traffic simulators. Macroscopic traffic simulators use general models

to predict the behavior of transportation networks. In contrast, microscopic simula-

tors use simple models of individual travellers’ behavior and attempt to model every

vehicle and traveller in the network. Microscopic models, which are more computa-
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tionally intensive, are preferred for offline simulation and evaluation of new systmes.

4.1.1 MITSIMLab

MITSIM[Yan97] is a microscopic traffic simulator developed by the MIT ITS program[ITS].

MITSIM has support for integrating arbitrary external systems[FR00] which should

make it suitable for this work. It is widely used in industry and academa.

In the Linear Road test harness, MITSIMLab is driven by a wrapper script (im-

plemented in Perl) which accepts the Linear Road parameters, and is responsible

for generating many of the random parameters, such as the precise distribution of

automobile origins and destinations, and the location of accidents.

4.2 Data Delivery and Output Validation

Data is delivered to the system being benchmarked over the network by the same

program that receives outputs and checks correctness. The delivery of data is simple,

the program checks the generated timestamp on each tuple in its input file and delivers

the tuple at the appropriate time.

Currently minimal output verification is done. Toll notifications and other re-

sponse are verified to have come within appropriate time-bounds. This is sufficient

for basic benchmarking purposes. A stronger validation system will be neccessary if

the benchmark is to be more widely used.
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Chapter 5

Linear Road Implementation in

Aurora

In order to validate the benchmark, and to test the test harness, I did an implementa-

tion of Linear Road in the Aurora system. Performance statistics on this implemen-

tation are presented in Chapter 6. In this chapter I describe the design of the query

network and the implementation of the custom operators and functions required to

implement Linear Road.

5.1 Linear Road Query Network

In Aurora, query networks are designed using a graphical tool, the Aurora GUI. This

tool supports a “workflow” model of queries. Networks are drawn as boxes and ar-

rows by the programmer and the properties of the boxes are specified. Information

conceptually flows from left to right, like water through pipes. In the case of Lin-

ear Road, nonlinearities are introduced into the network via Relations, described in

Section 5.2.

The entire Linear Road network is shown in Figure 5-1. The historical queries

are each implemented with a single box that reads data from a relation, and out-

puts its results directly. The continuous parts of the query can be decomposed into

three subqueries. The center subquery manages accident detection. The left sub-
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query aggregates car position data to calculate statistics for each segment. The right

subquery calculates a toll for each vehicle, and charges tolls when appropriate. These

three subqueries are described in detail in following subsections.

5.1.1 Accident Detection

An accident is to be detected if two cars are in the same position for 4 consecutive

position readings. To calculate this, accident detection uses a custom aggregate func-

tion to look at the last four readings for each car. If a car is stopped, a tuple is

emitted, to be aggregated by the next box, which looks for two cars both not mov-

ing in the same position. when this aggregate function emits a tuple, an accident

is detected. When an accident is detected, data about it is saved in one relation,

the Accidents relation, and the tolls for cars that are on the effected segments are

updated in another relation, Accounts.

5.1.2 Segment Statistics

The segment statistics is responsible for simple aggregate functions that calculate

the rolling average over the last 20 minutes of the speed and number of cars on

each street segment. Additionally, the subquery reads the Accidents relation to

determine if there is an accident on each segment. These statistics are written out to

the SegStats relation, which is used in toll calculation.

5.1.3 Toll Calculation

The toll calculation subquery is the most complex. It is also the critical path, because

performance in the benchmark is measured by the load supported while a maximum

15 second latency between position report and toll response is maintained. This

subquery is responsible for creating the toll response, and follows the decision tree

from Figure 3-1.

For each car position report that comes in, this subquery looks up to see if the

cars has been on the road before. If the car is entering a new segment of the road,

47



and was last seen on the previous segment of road, then the toll for the previous

segment needs to be charged. In addition, the toll for this segment needs to be

calculated, and the car notified of that toll. If the car is seen on an offramp, then no

toll is charged unless there is an accident, in which case the negative toll needs to be

charged. Whatever toll needs to be charged is used to update the Accounts relation,

as well as the DailyBalance relation.

5.1.4 Other Queries

Other queries originating with cars on the road are handled as simple lookups into

relations maintained by the rest of the system. Specifically, one special operator each

for looking up daily expenditures, balance, and estimated trip time.

5.2 Relations

Linear Road identified the need to store data persistently with an Aurora query

network (a more appropriate term may be “Aurora application”). This storage was

accomplished using the new (to streaming databases) concept of a relation. A relation,

like a database table, is identified with a global name and has a specified schema.

Relations allow persistent data storage, such as account balances. Relations can be

read and updated using a special operator box. Any relation can be read or updated

from anywhere in the network, and as a result they introduce nonlinearities.

At the time of the Linear Road implementation, full-fledged relations are not

available in Aurora. Limitted relations, offering only the capability strictly required

by Linear Road, were implemented as custom operators in Aurora.

The impact of relations on the streaming database model is still being studied.

5.3 Synchronization

Another challenge in implementing Linear Road was synchronization in the query

network. Relations lead to conceptual loops in the processing, where processing in
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two parts of the network is interdependent because of updating and reading the same

relation. Because computation does not occur instantaneously, but at the whim of

the scheduler, this leads to non-determinism. Worse, there is no way to delay one

part of a query network while another part of the network completes the update of a

relation.

This problem is similar to the need for transactions in classic databases. However,

rather than enforcing update order independence, what is needed is some way of en-

forcing a particular order on computation. The proposed solution to this problem, a

synchronization operator that can delay a stream until a predicate is fulfilled, has not

yet been implemented. Thus, it is not yet incorporated into the Aurora implemen-

tation of Linear Road. However, this operator should cover all the synchronization

needs of Linear Road, in particular delaying computation while waiting for a table to

update.

5.4 Custom Operators and Functions

Because Aurora is a research system, Linear Road required much functionality not

present in the current system. For example, the set of functions in the predicate

language, as well as the selection of built-in aggregate functions, was insufficient.

Because Aurora allows the programmer to specify custom functions, aggregate func-

tions, and operators, it was relatively easy to add this functionality. In this section,

I will describe the more interesting additions.

5.4.1 Read and Update Relations

Relations, described in Section 5.2, were required to implement Linear Road. Special

case relations were implemented, based on the Sleepycat DB library [Sle03]. Only the

specific functionality required by Linear Road was implemented.
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5.4.2 Aggregates Returning Multiple Values

In the Segment Statistics subquery (see Section 5.1.2), multiple aggregate functions

need to be calculated over the same window of data. For efficiency and consistency,

only one copy of this data should be maintained and only one pass should be made

over the data. To accomplish this, aggregate functions returning more than one value

were added to the system. They required modification of the type checking code in

the Aurora GUI.

5.5 Wrapper

The Aurora system exists as a C++ library that can be linked into an application.

In order to support the network interface specified in the Linear Road specification, I

built a small application that connects to the test harness over the network, enqueuing

received data to Aurora and sending data dequeued from Aurora over the network

to the test harness. This application was based on the standard Aurora workload

generator (wlgen) daemon, written by Ying Xing.
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Chapter 6

Performance Measurments

At the current time we have solid performance measurements only for a preliminary

version of the Aurora system. This system, with the implementation of Linear Road

described in this paper, scored a 1 on the benchmark. That is, it was able to run a

single expressway at rush-hour rates on the benchmark hardware platform. With a

redesigned operator set, optimized support for Relations, and many other implemen-

tation improvements, a much improved level of performance should be realized in the

near future.

At this time no confirmed numbers are available from the Stanford STREAM

project or the MIT Medusa project.
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Chapter 7

Related work

Related work in this area falls into two categories: identifying applications for stream

processing and benchmarking database. These will be treated seperately.

7.1 Stream Processing Applications

There are a number of applications suitable for continuous query processing. Babu

et al [BSW01] identified its use for computer network management and research.

Applying continuous query processing to highway data collection is discussed in the

Fjords paper by Madden and Franklin[MF02]. This work focusses on the challenges of

dealing with low power (both computation and communication) sensors. The queries

supported by the system are very simple, aggregating data from a small number of

nearby traffic sensors.

7.2 General Database Benchmarking

Historically databases have been the focus of much benchmarking effort. Thoughout

the 1980’s and up through the present time, On-Line Transaction Processing (OLTP)

has been an important performance concern for corporations investing in database

technology. Benchmarks in this area attempt to measure the number of transactions

that can be handled per second. The original industry-wide benchmark in this area,
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DebitCredit[Ano85], tested very simple transactions in a simple data set. From that

benchmark came a trade organization, the Transaction Processing Performance Coun-

cil (TPC). The TPC created a variety of benchmarks, designating them with letters.

These benchmarks initially focussed on transaction processing[TPC94a], changing

to match the new capabilities of database systems[TPC94b] [TPC02a]. TPC later

branched out into other performance metrics considered important for core corporate

databases, such as ad hoc queries and report generation[TPC98] [TPC02b] [TPC02c]

[TPC02d].

The “Wisconsin” benchmark was the first major benchmark to test the relational

capability of Relational Database Management Systems (RDBMSs). The benchmark

is described in a 1983 paper[DBT83]. It uses completely synthetic data, and is not

based on any application. This lead to some criticisms about the realism of the

benchmark[Gra93].

The next major area of database development was in object-oriented databases.

Work in this area eventually resulted in several benchmarks, including OO7[CDN93]

for true object-oriented databases, and the BUCKY[CDN+97] benchmark for hybrid

object/relational databases.

There also exist a number of benchmarks for scientific databases. Because business

database users dominate the market, there is a need for customized benchmarks

focussing on scientific users. One such benchmark is Sequoia 2000[SFGM93]. Most

case of scientific databases involve benchmarking for storage of particular complex

datatypes, or for particular complex queries. As more application areas for streaming

databases are developed, such specific benchmarks may become neccessary.
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Chapter 8

Conclusions

Returning to Gray’s four criteria for database benchmarks, we can reflect on our

success:

Relevant Linear Road is relevant, dealing with an application that is clearly a good

use of streaming databases. Time, and more development of streaming database

applications, will tell how generalizable the benchmark is.

Portable Because Linear Road is an application-level benchmark, it is portable

across any implementation language, and even across any set of primitive database

operations.

Scalable Linear Road can be scaled by simply simulating more roads, placing a

heavier load on the database.

Simple Linear Road, by dealing with an easy to understand application, is easy to

explain to a variety of audiences.

Based on these criteria, Linear Road should be a success as a database benchmark.

One major outcome of developing this benchmark has been the influence over the

design of the Aurora engine and its operator set. During development of the Linear

Road benchmark, Aurora was undergoing major design work. In particular, the set

of operations for building applications was being resigned. Linear Road provided
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an example of a “real” application. It was important to an understanding of what

functionality would be offered by Relations (see Section 5.2), as well as in arguing for

high performance latch functionality. Synchronization was found to be a big problem,

and is leading to the introduction of a new “Wait-for” operator (see Section 5.3).

Linear Road also showed that real applications make heavy use of custom aggregate

functions, and generally need more than basic aggregate functionality. The resulting

operator set is more extensive, and should prove easier to use when implementing real

applications.

Linear Road has also helped to bring the streaming database community together

to compare actual performance numbers and discuss operator sets. This initially

happened at the SIGMOD 2003 conference, and will hopefully continue.

The major conclusion to be drawn from Linear Road is that a more precisely

specified benchmark would be better in many ways. However, this will have to wait

until there is clear agreement on a language and model which will be implemented

by streaming databases across the board.
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