Adapting an Object-Oriented Database for
Disconnected Operation
by
Sidney H. Chang

S.B., Computer Science and Engineering
Massachusetts Institute of Technology (2000)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2001
(© Sidney H. Chang, MMI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part.

Department of Electrical Engineering and Computer Science
May 23, 2001

Certified Dy .. ..o
Dorothy Curtis

Research Staff, MIT Laboratory for Computer Science

Thesis Supervisor

Accepted by ...
Arthur C. Smith

Chairman, Department Committee on Graduate Students






Adapting an Object-Oriented Database for Disconnected
Operation
by
Sidney H. Chang

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2001, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Wireless computers are often only intermittently connected to the network. Thus
disconnected operation is an important aspect of wireless computing. Disconnected
operation focuses on providing useful services to a mobile device even while discon-
nected from the network. Further, if shared data is in use, disconnected operation
must deal with the management of operations on shared data. If the user of a discon-
nected device operates on shared data, the data must be cached before disconnection.
Cached data must be reconciled with the original data once the device is reconnected
to the network. Even worse, if two users have cached the same data and changed it
while disconnected, this causes a conflict and some form of conflict resolution must
be made in order to integrate these changes. In this thesis, the Thor object-oriented
database system is extended to support disconnected operation. While many schemes
have been devised to avoid conflict resolution or provide mechanisms to automati-
cally resolve conflicts, the approach to conflict resolution taken here is to develop a
framework to facilitate conflict resolution by the application. This study provides
interesting information about how applications, such as a shared calendar, can be
adapted to fit a disconnected transaction model of the system in order to achieve the
proper semantics.
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Chapter 1

Introduction

1.1 Motivation

Mobile computing devices such as personal digital assistants, laptops, and cellular
phones have become a common part of everyday life. Many of these mobile devices
now have wireless capabilities that allow them to communicate with other computers
over a wireless network. However, wireless computers will often only be intermittently
connected to the network due to expensive wireless networks and concerns over power
consumption. As a result, wireless devices must also support disconnected operation
or the autonomous operation of a mobile device while disconnected from the network
[18].

Additional support is required for disconnected operation since even while discon-
nected, a user may wish to perform operations that would normally require the usage
of a network connection. In particular, mobile users may make use of applications
that normally access corporate or private databases through a network connection.
For example, a travelling salesman may wish to use his laptop to enter a customer’s
order into a database located in the main office while he is at the customer’s site but
does not have network access. Another example is a worker commuting to the office
who would like to use his hand-held device to enter an appointment into his calendar
which is stored in a central database at work.

In both of the sample scenarios described, users of mobile devices are accessing

11



and modifying data that is centrally stored and normally accessed via a network
connection. The data in this central store can be accessed and shared by multiple
users. A key issue for shared data in collaborative applications is, multiple users may
be accessing and modifying the same data concurrently. Thus a user may read stale
data or one user’s updates may conflict with another user’s updates to the same data.
For example, in the case of the travelling salesman, one user may update a customer’s
record to reflect a recent sale while another user concurrently updates a customer’s
record to indicate that that customer no longer has a viable credit standing. In
the case of the calendar user, the commuter may enter an appointment for himself
while his assistant enters another appointment for him for the same time. From these
examples it is clear that conflicts can arise for disconnected users who share data with
other users but also that these conflicts are defined by application semantics and vary

widely from one application to the next.

Concurrent access to shared data is often solved by employing transactions to
achieve serializability of operations and consistency of data across multiple users.
However, for disconnected operation, the transaction model is challenged since users
of mobile devices will be more likely to read stale data when disconnected and update
conflicts will be more frequent since periods of disconnection will allow that device’s
view of data to diverge from others. From a system’s perspective, a solution to these
problems means either preventing them from happening or providing support for
resolving them if they do happen. To prevent stale reads and update conflicts from
happening a system must guarantee that all users always read up-to-date copies of
the data. This is often achieved with locking or pessimistic schemes where only one
user may access a piece of data at a time. But for a mobile setting, this constraint
is not acceptable. Requiring that a disconnected device possess a lock on the data in
order to update the data either prevents other users from having that data available
until the disconnected device reconnects and releases the lock or prevents the user of
the disconnected device from performing operations while disconnected. Therefore
a system that supports disconnected operation should allow for a non-locking or

optimistic scheme that allows any data to be accessed. However, the result of an

12



optimistic scheme is that the system must then provide support for disconnected
devices to resolve update conflicts since stale data may be read and concurrent updates
may occur.

Providing support for resolving update conflicts faces a tradeoff between general
support for a large set of applications and providing enough functionality for an
application to satisfy its goals. Since as previously stated, conflicts are defined by
application semantics, system support for conflict resolution is highly influenced by
the application. If a system generalizes support for a large set of applications, it often
ends up offloading much of the logic to the application. But if a system provides sup-
port specific to a particular application it precludes other applications from using the
system since another application may need completely different semantics to resolve
its conflicts. The ideal solution is to find a balance in the system so that it provides
a sufficient set of tools that are general enough to support a large set of applications
but also allows applications to resolve their conflicts easily and without interfering

with the consistency of the data in the system.

1.2 Approach to Conflict Resolution in Thor

This thesis describes an investigation of the problem of providing support for resolv-
ing update conflicts within the context of disconnected operation on mobile devices.
It includes the extension of an existing object-oriented database, Thor, to support
disconnected operation and the usage of that system as a platform for examining how
applications make use of the conflict resolution mechanism provided by the system.
Similar to [9], this investigation attempts to extract a set of requirements for collab-
orative applications on mobile devices that use shared data and evaluate the support
provided for meeting those requirements.

There are many possible ways for a system to provide some mechanism for manag-
ing conflict resolution ranging from application specified mechanisms to completely
system automated resolution (see Section 2.2). We approach conflict resolution in

Thor by defining conflicts independently of application semantics and solely as a
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means of maintaining consistency of objects and leave conflict resolution up to the
application. The rationale is that, the system’s main job is to maintain the con-
sistency of the data and it will always be the case that the user will be asked to
manually repair some conflict since the system will not be able to handle all conflicts
in all cases for all applications. Total elimination of conflicts is, by definition, an
unattainable goal in an environment where concurrent updates to the same data are
permitted [14]. In addition, this simple approach to conflict resolution will provide
the framework necessary for investigating the needs of different applications in re-
solving conflicts and for discovering what in addition to the minimum support given,
can the system provide to help satisfy these needs.

By implementing disconnected operation in Thor, this thesis aims to provide both
consistency of shared data and flexibility in conflict resolution for a wide variety of

applications.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Section 2 provides background
on issues in disconnected operation (including previous work in conflict resolution
mechanisms) and an overview of Thor. Section 3 will discuss the design and imple-
mentation of the extension to Thor to support disconnected clients. In Section 4, we
discuss an evaluation of the system using a sample application and performance tests
with object-oriented database (OODB) benchmarks. Section 5 compares this work
with some related works and finally, Section 6 concludes with a summary of the thesis

and suggestions for future work.
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Chapter 2

Background

In this section we present an overview of the issues in supporting disconnected oper-
ation. Then we focus on the issue of synchronizing data upon reconnection and how
previous systems have provided support for conflict resolution. This is followed by an
overview of the system in which this work is implemented, the Thor object-oriented

database system.

2.1 Disconnected Operation

For a system to support disconnected operation there are generally three phases
to consider: preparing for disconnection, operating disconnected, and reconnection.
Associated with each phase is a set of issues and each issue has a corresponding set
of possible approaches. Table 2.1 is derived from Petoura’s summary of system-level
support for disconnected operation in [18]. It summarizes the phases in disconnected
operation and the issues and approaches associated with each.

To prepare for disconnection, the main issue is the prefetching of data into the
mobile device since the repository from which the data is normally retrieved will no
longer be accessible. Depending on the system, this repository could be a database
server, file system server, another mobile device, etc. And depending on the source
from which data is fetched and the rest of the system’s architecture, the unit of

prefetch will change - it could be objects, files, pages of data, operations, etc. What
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Issue Approach
Prepare for Disconnection | Prefetchunit | __Dependsonthesystem |
What to prefetch User specified .
Based on history of operations
e . PPlicatioN specified
When to prefetch Prior to disconnection
On a periodic basis
Operating Disconnected Request for data not prefetched Raise an exception
Queue for future service
What to log Data values
Operations
| _Timestamps
When to optimize the log Incrementally .
Prior to reconnection
How to optimize the log Depends on the system
Reconnection | Howtointegratelog | Replaylog
How to resolve conflicts Use application semantics
System automatically resolves
User specified

Table 2.1: Phases associated with disconnected operation and their corresponding
issues and possible approaches.

and when to prefetch is a design decision which impacts the control of the user over
prefetching.

What to prefetch can be based solely on a user’s history of usage, application
specifications, direct user input, or a combination of some or all of these. A user’s
history of usage can be used in a similar fashion to standard caching mechanisms
for data with temporal locality. Usage of history information can be organized on
a per application basis or on a total set of operations. For example, in a database
system, an application may have a history of accesses to a particular set of data
associated with that application and data associated with that application can be
prefetched. On the other hand in a file system, the system can track overall usage of
files regardless of which application actually accessed the files and prefetch frequently
accessed files over all applications. To achieve spatial locality, application or user
input may be necessary in order to prefetch objects that are likely to be accessed
together. For example, in a calendar application, the system may be able to tell that

a certain set of events are of interest to a user by a history of accesses but only the
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application would be able to tell that since events from one user’s calendar are being
accessed, all of the data associated with that user’s calendar should be prefetched
(not just the recently accessed events). Other considerations in prefetching data
include information that can not be collected without direct user input such as what
applications the user intends to use while disconnected. Yet another consideration
is whether or not certain data will be used concurrently by other users. In certain
cases it may be better for a mobile device to not prefetch data that may be used

concurrently in order to avoid having to resolve conflicts upon reconnection.

When to prefetch data should complement the strategy for deciding what to
prefetch. If data is prefetched in the background on a periodic basis it would not
make sense to query the user for what to prefetch each time. It would be more
suitable to have an application specify what to prefetch in a configuration file or
base prefetching on a user’s history of accesses. If data is prefetched just prior to
disconnection, then it would be suitable to query the user at that point. Although
configuration files and history of access information can also be used at that point,
history information would likely fetch data that had been useful to the user only di-
rectly prior to disconnection and may not have any relevance to what the user would

like to use while disconnected.

While disconnected the main issues are what the user is permitted to do and
logging. Since the user contains a local copy of the data while disconnected but the
repository of data from which it retrieved its copy can still modify that data while
the user is disconnected, the first question to deal with is whether or not the user
can modify data that may potentially be modified by someone else. In an optimistic
scheme, where users are allowed to modify shared data that may be concurrently
accessed by other devices during the device’s period of disconnection, some form of
conflict resolution is required - this means that upon reconnection, certain operations
made while disconnected may fail and these failures have to be handled. Since this
project deals specifically with resolving update conflicts upon reconnection, the user is
permitted to modify prefetched copies of data while disconnected. Other pessimistic

schemes may be devised where a disconnected device will allow only reads of copies
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of shared data and no writes or a disconnected device can be granted a lock on a
piece of data so that only it will have the right to modify a piece of shared data
(in which case the user can modify only shared data for which it has a lock while
disconnected). The benefit of these last two schemes is that there will be no need to
deal with conflicts upon reconnection. However, for the mobile computing setting,
mobile users will want to be able to access data even while disconnected so availability
through an optimistic scheme is granted at the price of having to handle conflicts on

reconnection.

Another issue in operating disconnected is if a user attempts to access data that
has not been cached. The system may either inform the user that the operation can
not be processed at the time and abort that operation or the system can queue the
operation to be processed upon reconnection. The user or application may also wish
to have input into this process because it may be acceptable to abort an operation
and continue with other operations in certain cases but may not be acceptable in
other cases. For example, the travelling salesman can not proceed with a customer’s
order without verifying his credit record but a calendar user may be able to continue

adding events to his calendar even if one event was not accessible.

To keep track of the operations that a user makes while disconnected, it is nec-
essary to maintain a log. The log must keep track of the updates that users make
while disconnected. The form in which these updates are recorded can be actual data
values, operations, or timestamps. Storing operations gives greater context for the
modifications that occur while disconnected. This information can be very useful in
resolving update conflicts that occur upon reconnection. Timestamps consume less
space at the disconnected device but may also the cause reconnection process to take
a longer amount of time. Storing data values will make restoring states easier if an
abort should occur, but it will also consume more space on the disconnected device.
The format in which data is stored in the log will also be highly dependent on the

rest of the system.

Since the mobile device will have limited resources and quick reintegration of the

log upon reconnection is desirable, optimizing the log in terms of when and how is
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important. Optimization of the log will depend on the implementation of the log.
The log can be optimized incrementally during the disconnect or can be done upon

reconnection.

Upon reconnection, the main issues are processing the log and dealing with fail-
ures. Processing the log consists of replaying the contents of the log. This process can
have different semantics in different systems. The log can be guaranteed to replay in
the same order in which it was filled or it can have looser semantics where dependent

operations will be in order and others can can be out of order.

The process of replaying the log is often called reintegration or synchronization of
the disconnected device’s local data with another repository of data. The difficulty
that arises is, if in the process of synchronizing the data, a concurrent update to some
data in the log has occurred. The problem of synchronizing data between a mobile
device and a stationary host is not new. Palm pilot devices are well-known examples
of mobile devices that synchronize their data with a desktop computer. However,
this work differs from the Palm pilot model because with the Palm pilot the user is
synchronizing data only between his own copies of the data meaning that he is the
only one really modifying the data. This work investigates support for collaborative

applications where multiple users will often access the same data concurrently.

As stated in section 1.1, a common way to handle concurrent accesses to shared
data is to use transactions to achieve serializability and consistency of operations
on data. Traditional properties of transactions are: atomicity, consistency, isolation,
and durability (ACID). These properties need to be redefined, i.e. relaxed, in order
to provide transactions in mobile computing. A new transaction model is needed
since transactions can no longer commit or abort at the ending boundary without
connectivity. There can be scenarios in which a mobile device is granted “ownership”
of a piece of data and so it can use normal transactions on that data, however this
would prevent other users from being able to access that data. Various transaction
models for mobile computing have been studied in [17, 8, 16]. Each is similar in
that weak, tentative, or second-class transactions are defined for transactions made

on data local to a mobile device while disconnected. They are considered as such
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until the device reconnects with the repository of data and synchronizes its tentative
transactions to become persistent or permanent transactions.

To deal with conflicts or aborts that occur upon reconnection, there can be several
approaches. The systems can automatically try to resolve conflicts. This may be
possible for systems where the semantics are simple but for systems where a variety
of applications with different semantics can be making use of the system, it may be
too difficult for the system to automatically resolve the conflicts in some reasonable
manner for every application. Another way to resolve the conflicts is to consult the
user upon a failure. However, this may be cumbersome for the user and would require
giving the user enough context in order to understand why a failure occurred in order
to have an idea of how to resolve it. Conflict resolution can also be left up to the
application since it is best aware of its own semantics. However, this can also become
difficult for the application programmer. A combination of system, application, and
user support can be used to resolve conflicts. The main question is then what is the
basic support that a system should provide to the application in resolving conflicts?
The next section describes the approach to conflict resolution in several different

projects.

2.2 Approaches to Conflict Resolution

Conflict resolution can be approached in different ways. One is to simply avoid it by
providing mechanisms for an application to give “hints” to the system for allowing
certain concurrent actions or relaxing the ACID semantics of a transaction. Another
way is to provide a mechanism for an application to write type-specific procedures
for resolving conflicts with a last resort of consulting the user when the resolution

procedure fails.

2.2.1 Conflict Avoidance

Avoiding conflicts means allowing concurrent accesses to data to occur in a manner

that still results in serializable and consistent results. One common way to allow for
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concurrency is to make use of commutativity properties of data resulting in a more
dynamic atomicity [22]. Commutativity is a property of operations on specific types of
objects that allows operations to be reordered and arbitrarily interleaved. Consider,
for example, an object that is an integer and it has an increment operation. If two
concurrent increments occur their ordering does not matter since either ordering of
the increments will still result in the same final integer value. Other more advanced
means of allowing concurrency include escrow based techniques, recoverability, and

fragmenting objects.

Transaction escrow methods [11] are based on a quantity such as the the total
number of items in stock, which is normally locked for the duration of a transaction
that reads and modifies the quantity. For example, the transaction could include
placing an order and decrementing the number of items in stock. Instead of placing
the lock on the quantity for the duration of a long-term transaction, the quantity
is locked for only a short time to update an escrow log which has the quantity’s
state after a number of uncommitted transactions. So, in the course of deciding
whether or not to complete an operation, the object’s current state and also the state
in the escrow log is used to make a worst-case decision (worst-case is if all of the
uncommitted operations commit). This has the benefit that locks are much shorter

and concurrent accesses will not have to wait long for a lock.

Recoverability [2] provides more concurrency than commutativity. An operation
b is recoverable with respect to operation a if the results are the same regardless
of whether or not operation a executes before b. For example, a stack push is not
commutable yet it is recoverable. So two noncommutative but recoverable pushes
could be allowed to execute concurrently, however if both should commit, they would
still need to be in a serializable order but if one should fail, the other can still commit
since they are recoverable.

Fragmenting of objects [21] is where objects are broken up among disconnected
devices so that a disconnected device can operate autonomously on a fragment of an
object. Fragmentable objects require that application semantics can be exploited in

order to define split and merge operations that describe how an object can be split
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into fragments and then how fragments can be merged back into a single consistent
copy. Objects that are fragmentable are often aggregate objects such as stacks, sets,

or queues.

2.2.2 Conflict Resolution

Rather than try to accommodate concurrency, other systems have tried to accommo-
date the resolution of conflicts after they have occurred. These mechanisms are built
into the system and allow for an application to define their resolution procedures
based on application semantics. Examples of such systems are Coda, Bayou, and
Rover [13, 6, 12].

Coda is specifically designed for file systems. It uses an optimistic concurrency
control scheme meaning that any client can update its copy of a piece of data. Coda
automatically resolves concurrent updates to directories and also has a mechanism for
transparent resolution of file conflicts called application-specific resolvers [14]. While
the application-specific resolver works in some cases, in cases where it fails, the user
will have to resort to interactive repair.

Bayou also uses an optimistic concurrency control scheme and, rather than sup-
porting transactions, propagates updates by pairwise anti-entropy sessions [7]. Bayou
is different from other shared data management systems that support disconnected
operation because it caters to the application and has many provisions for letting
the application specify as much information as possible to help the system deter-
mine how to deal with update conflicts automatically [20]. It has provisions such
as dependency checks and merge procs. These can be assigned per object type and
are invoked on each update. The dependency check allows the application to specify
what integrity constraints must be maintained in the database by an update while
the merge proc attempts to handle a failure of the dependency check. However, like
the application-specific resolvers in Coda, Bayou’s merge procs can also fail in which
case the application or user will be consulted for manual repair.

Rover is very different from Coda or Bayou. It essentially provides a framework

for queued remote procedure calls between a disconnected client and a central server.
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Client applications cache objects from the servers and queue operations made on
those objects while disconnected [12]. Rover provides clients with facilities for con-
flict detection and resolution, however unlike Coda or Bayou, the system itself has
no notion of problems arising from concurrent updates to the same object. The ap-
plication must specify what a conflict is, even in the case of two clients updating the
same object. However, Rover’s model of passing operations rather than only new
data values, allows an application to have the context of a failure and also allows an

application to make use of commutativity of objects.

2.2.3 Summary of Approaches

Clearly there are many different mechanisms for conflict prevention and resolution.
However, prevention mechanisms work only for specific cases and making use of such
mechanisms can be hard. For example, escrow methods are appropriate only for nu-
meric values and defining split and merge operations for fragmentable objects may
not be immediately obvious for more complex data types. In addition, resolution
mechanisms in systems such as Coda, Bayou, and Rover will not be able to handle all
conflicts and the user will be asked to manually repair some conflict for some appli-
cation. Therefore the rest of this thesis will describe the design and implementation
of a system that leaves conflict resolution completely up to the application. By in-
vestigating applications using this system we attempt to find basic requirements for

system support for conflict resolution for disconnected devices.

2.3 Thor Overview

This study of conflict resolution for disconnected devices makes use of the Thor dis-
tributed object-oriented database system. This section gives an overview of the Thor
architecture and how applications interact with the system to achieve transactional

semantics.
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2.3.1 Thor Architecture

Thor provides a persistent store of objects where each object has a unique identity,
set of methods, and state. The system has a client/server architecture servers are
repositories of persistent objects. The OR consists of a root object where all persistent
objects are reachable by the root object. The OR handles validation of transactions
across multiple clients by using an optimistic concurrency control scheme described
in [1]. Clients in Thor are made up of a front end (FE), application schema, and user
interface. The FE handles caching of objects from the OR and runtime transaction
processing. Applications operate on cached objects at the FE inside transactions
boundaries and request to commit transactions through the FE at the OR. Figure
2-1 shows the organization of the FE, application schema, user interface, and the

OR. All communication between the client and server is between the FE and OR. All

Application

Ul Schema

OR

Y

FE

A

Figure 2-1: Thor has a client/server architecture. The client is made up of the front
end (FE), application schema or object definitions, and a user interface. The server
is the object repository (OR).

communication between the clients and servers in Thor is between FE’s and OR’s.
The communication is limited to a set of specific messages. Table 2.2 lists the types
of messages passed between the FE and OR. The FE will send the OR a root fetch
message on startup of the client in order to get a handle on the root of the repository

of objects. All other objects in the repository are reachable via this root. During
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the course of a transaction the FE may request objects by making fetch requests to
the OR. At the end of a transaction the FE can send a commit request to the OR.
In addition the FE can also request the OR for the allocation of space for newly
created objects. The OR can send to the FE invalidation messages when other FE’s
have committed changes to objects in the repository. The FE must respond to these

messages by invalidating stale objects indicated in the invalidation message.

Messages Sent
FE —= OR OR—= FE
- get root - send root
- fetch object - send data
— commit request — commit reply
- invalidation ack - invalidation
— allocate request — allocate reply

Table 2.2: Messages sent between the FE and OR are limited to the above. The
FE initiates root object requests, object fetches, transaction commits, and allocation
requests for new objects. The OR initiates invalidation messages.

2.3.2 Objects in Thor

Thor OR’s store objects on disk in pages. FE’s cache entire pages of objects and
pages will remain identical to those at the OR unless a page is compacted at the
FE to free up cache space. A method of hybrid adaptive caching or HAC is used to
compact hot or frequently accessed objects into a page while discarding cold or less
frequently accessed objects [5].

Each object is uniquely identified by an identifier known as an oref. An orefs is a
32-bit identifier that uniquely identifies an object. It is also used to locate an object
within pages at the OR and FE. 22 bits of the oref are a pid or page id which identifies
the object’s page and 9 bits of the oref are an oid or object id which identifies an

object within a page but does not encode its location. Instead oid’s are mapped to
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offsets within the page in an offset table stored with each page. This allows for easy
movement of objects within a page.

At the OR’s objects are known only by their orefs. However, not all objects at
the FE are persistent. Objects at the FE are categorized as either persistent or non-
persistent. Persistent objects are objects that the OR’s are aware of and that are
reachable from the persistent root object. Non-persistent objects are objects that
are newly created by an application that have not yet been committed at the OR
or objects that are temporarily used by the application but do not need to persist
across different runs of an application. Persistent objects at the FE are stored in the
persistent cache which caches whole pages from the OR. An object in the persistent
cache can be reached at the FE via its oref. Non-persistent objects, by contrast,
are stored in the volatile heap and do not have orefs until they are committed and
assigned oref’s by the OR.

For a program to access an object at the FE in the persistent cache, orefs must
be mapped to local memory. To speed up this lookup process, objects at the FE
are swizzled so that oref’s become pointers into the ROT or Resident Object Table.
The ROT has handles to persistent objects so that when a reference is made to an
object, rather than use its oref, a ROT entry is used to locate an object. The HAC
scheme mentioned above uses the ROT to keep track of accesses to objects and also
handles cleaning up unused references in the ROT [5]. In addition the ROT is used
to maintain handles on non-persistent objects since they do not have orefs. Note that
this means that non-persistent objects can not be removed from the ROT until they
have been made persistent or there are no references to them. However, persistent
objects may be removed from the ROT if their pages are being removed from the

cache as long as there are no references to them.

2.3.3 FE Transaction Logging

Transactions are logged as operations are made by an application within transaction
boundaries. This logging is used to determine which objects were read, written, and

created within a transaction. All transaction logging is done at the FE as applications
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operate on objects. Every time an object is read, written, or created it is logged so
that the appropriate information is available for when the application requests a
commit.

Applications make high level operations on objects as defined in the schema for
the application. These high-level operations on objects are reduced to reads, writes,
and creations of objects. Each of these is recorded by the FE in order to create the
correct information to be sent to the OR in a commit request. While application
operations are defined in the schema in Java, the schema are converted to C code

which then includes extra code for each objects access that logs the access with the

FE.

2.3.4 Committing Transactions

An application can complete a transaction by making a request to the FE to commit
the transaction. The FE processes this request by taking all of the logged information
on what objects have been read, written, and modified and creating commit sets - the
read object set (ROS), modified object set (MOS), and new object set (NOS). These
sets are sent to the OR in the form of a commit request. The ROS and MOS will
contain only persistent objects and the NOS will contain only those non-persistent
objects created inside the transaction that are reachable from some persistent object.
Therefore any object in the NOS must be also be referenced in the MOS of the same
transaction. The ROS and MOS must have objects in their unswizzled form, i.e. they
should only be identified by their orefs and not ROT entries since the OR understands
only orefs. Before a NOS is sent to the OR it must contain orefs. The FE maintains
some free pages for new orefs but in the event that there are no free orefs available,
the OR is contacted to obtain new orefs.

To handle concurrency, an OR will validate a transaction based on whether or not
that transaction contains invalidated objects for the FE from which the request came.
The OR maintains per-FE a set of invalidated objects which are objects whose state is
no longer valid since the time the FE cached them. Objects become invalidated when

one FE successfully commits a transaction. Any objects modified by that transaction

27



will be invalidated for other FE’s that have cached that object since they now have
a stale copy of the object. FE’s are notified of invalidations and must acknowledge
them by invalidating the objects in the persistent cache so that if those objects are
ever accessed by the application, their new state will be fetched from the OR.

The OR can either commit or abort the FE’s commit request. If the transaction
is aborted by the OR, the FE must then roll back any of the changes made by the
application. This includes reverting the state of modified objects back to the original
state prior to the transaction and removing any newly created objects from the volatile
heap. If the transaction is committed by the OR, the FE will move any newly created

objects from the volatile heap to the persistent cache.

2.3.5 Why Use Thor?

After having described an overview of the Thor system, the question of why Thor

was chosen for this work may arise. There are several reasons for using Thor:

e To achieve consistency in the presence of disconnected operation, it has been
stated that optimistic schemes are more desirable. Thor already provides an

optimistic concurrency control scheme.

e To achieve flexibility in conflict resolution, Thor’s object-oriented design may

provide the flexibility necessary to support a variety of applications.

e A preliminary study of disconnected operation in Thor [10] suggested that dis-
connected operation would fall naturally into the design of Thor. However, this

has not yet been substantiated by any implementation.
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Chapter 3

Design and Implementation

In the previous chapter, Thor was introduced. However, it did not support discon-
nected operation. In this section, the design and implementation of disconnected
operation in Thor is described in detail.

A disconnected client in a database system is unable to communicate with a
server. Hence, the client can not fetch data, make requests to commit transactions,
or receive updates (i.e. invalidations in Thor). To prepare for disconnection, the
client can retrieve data that might be useful to a user while disconnected from the
server. During the period of disconnection from the server, the client saves enough
information per transaction in a log so that upon reconnection with the server, the
server is able to commit or abort each saved transaction and the client is able to
resolve aborts or conflicts that may arise. When the client reconnects with the server,
it synchronizes its log of saved transactions with the server and updates the state of
the cache to reflect the commit or abort of each logged transaction and any updates
received from the server.

The extension of Thor to support disconnected clients has two main aspects: ex-
tensions to the application (user interface and the application schema) and extensions
to the FE (caching and per transaction processing). The reason for the division is
that certain requirements for disconnected operation are heavily based on application
semantics. For example, the objects that should be prefetched into a cache before

disconnection depend on what operations a user will be likely to invoke while discon-

29



nected. Another example is the resolution of aborts upon reconnection with the OR.
If a saved transaction is aborted after reconnection, the application semantics will
dictate how the abort should be dealt with.

The following sections will first describe the design of FE support for disconnected
clients that is independent from application semantics and then will describe the
design of how application based support for disconnected clients should be organized
in applications built on top of Thor (a specific example of an application will be

discussed in 4.1).

3.1 FE Support for Disconnected Operation

FE support for disconnected operation can be divided into three phases. The first
is preparation for disconnection which deals mainly with prefetching of objects. The
second is operating disconnected which handles a different transaction semantics for
disconnected operation (as opposed to when the FE is connected). The third is
reconnecting with the OR which includes the handling of pending transactions and

the commits and aborts resulting from them.

3.1.1 Preparing for Disconnect

To prepare for disconnection from the OR, the FE will need to prefetch objects
into the cache by processing queries specified by the application. No additional FE
support is necessary for this since a prefetch query will look to the FE like any other
fetch query. However, to the application the prefetch query will be very different
than a fetch query since it may require user input or special purpose queries in the
application schema. This will be discussed in section 3.2.1.

A desirable trait of a prefetch query is to not only have the requested object
fetched from the OR but also related objects. This is a feature that the FE could
implement since the application specifies only a single object that it would like fetched
and it is up to the front end to request any additional objects based on locality of

objects in the cache. However, this is also already a feature of every normal fetch

30



since an application requests only a single specific object, but the fetch request to the
OR will actually return an entire page of objects. This page will likely “have some
locality within it and therefore other objects on the page are likely to be useful to
the client” [15]. For the FE to provide a greater control over the locality of objects,
it is possible for the FE to infer the locality of references made by the application
prior to disconnect from usage information stored in the cache. Previous work has
also been done on this in Thor with hybrid adaptive caching (HAC) techniques that
store hot objects and discard cold ones based on frequency of access [5]. However,
this only gives temporal locality information and requires that the FE has already
collected such information based on the operation of the application. For spatial
locality information, only the application can specify this information since it is aware
of application schema and how objects reference one another in different operations.

The usage of this information in prefetch queries will be discussed in section 3.2.1.

In addition to preparing the client for disconnection, the OR must also prepare
for a client’s disconnection. The OR must keep per-FE information in order to know
which object invalidations a client has seen or not seen. Invalidations are used in
order to ensure that the client has the correct versions of objects. It is important
for the OR to have the correct set of invalidated objects per FE. For example, if
the OR incorrectly thinks that an FE has already seen an invalidation message for
a particular set of objects when in fact the FE has not, it may allow a transaction
based on stale data to succeed. While this was not implemented for the system since
the focus was on support for disconnected clients at the FE and application levels,

possibilities for its design are discussed here.

There are two options for the OR to save state for an FE once it has disconnected.
The FE can maintain a timestamp associated with the last information received from
the OR. This gives the OR enough information to know the state of the objects the
FE last saw before disconnecting. The other option is to have the OR assign an id
to the FE before it disconnects and then maintain FE state while it is disconnected
including a set of invalidated objects. But the FE may never reconnect so the OR

will also have to time out after some finite amount of time and assume that the FE
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will never reconnect after that point.

The first option is appealing since the OR does not need to maintain any state
and does not have to impose a time limit in which the FE may reconnect. However
reconnecting with the FE will take much longer since without an invalidated object
set and only a timestamp, each object in the write set of a commit will have to
be checked against the timestamp of the version of the object at the OR and the
timestamp that the FE disconnected with. And then to prevent having to make this
check for every transaction thereafter or until the FE has accessed each object at least
once again, the entire FE cache must be flushed after emptying the queue of pending
transactions. Alternatively, upon reconnection, the OR could recreate an invalidated
object set for the FE based on the timestamp but this would require iterating through
the entire object repository at every reconnect.

If we expect that the FE will reconnect often, then the second option is a more
viable one since the time limit on reconnect can be set with the expectation that the
FE will reconnect within that time. Even though the OR will use memory to maintain
state for the FE while it is disconnected, it is likely FE’s will be disconnecting and
reconnecting often enough that it will not run out of memory.

A combination of the two options can be used to allow clients to specify whether
or not they will be reconnecting again soon in the future (where the definition of
“soon” is defined by the time limit imposed at the OR) or not. Then the appropriate
method can be picked by the OR for saving the FE’s connection state.

3.1.2 Operating Disconnected

Once the client has disconnected from the OR, an application will still attempt to
commit transactions as it normally would while connected except the semantics of
the transaction change. While disconnected, a commit becomes a tentative commit
meaning that the commit could potentially be aborted by the OR upon reconnection.

The first question is then, what do the changed semantics of a commit mean for
the state of objects at the FE cache? One option is to change the state of objects

in the FE cache to reflect the modifications of a transaction as it is tentatively com-
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mitted. Another option is to not change the state of the objects in the FE cache to
reflect a tentative commit but rather save only the modified state in a log of modifi-
cations. The first option follows naturally from the model taken by connected Thor
since transactions in connected Thor will modify the cached objects and then revert
the changes if the transaction should abort. It makes accessing objects during a
transaction easier but makes handling aborts more difficult. The second option is on
the other hand the opposite - it makes looking up objects during a transaction harder
but makes handling aborts simpler. In the second option, each modified state of an
object is saved in a log rather than directly modifying the version of the object in
the cache. This makes aborts easy since nothing in the cache is modified. But during
disconnection, the application will likely have more than one transaction. So in order
to lookup the current state of an object, the FE can not simply look up the state
of the object in the cache but must query the entire log of modifications made while
disconnected to see if there is a more current version of the object. Therefore the first
option is more viable since aborts are expected to be infrequent and since performance
at the FE while disconnected should be comparable to when it is connected.

When an application commits during disconnection, a tentative commit is inter-
preted by the FE as logging a tentative transaction in the tentative transaction log.
This log saves enough state per transaction made during disconnection in order to
replay each transaction once the FE is reconnected with the OR. The application
will be given an id upon tentatively committing to identify an operation with a ten-
tative commit which can later be used to aid in resolving an abort. The following
sections will describe the details of the log and the state maintained for each tentative

transaction.

Tentative Transaction Log

The log is a queue of tentative transactions. When an application makes a commit
request, the FE will log a tentative transaction in the tentative transaction log that
encapsulates all of the information necessary to process the commit at a later time.

Each tentative transaction is numbered from 1 to n where n is the number of tentative
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Tentative Transaction Log

ROS, ={a, b, c, d, e}
T, MOS ={b, c}

NOS, ={d, e, f, g}

ROS, ={a, b, g}
1T, |MOS={a}

NOS, ={h}

ROS ;={a e}
7T, |MOFa={a e}

NOS ,={i, j, k}

ROS, ={a, b, ¢}
T, MOS, ={a, b}

NOS, ={l,m}

Figure 3-1: Transactions committed while the client is disconnected are saved in a

tentative transaction log. Each tentative transaction in the log consists of a read
object set (ROS), modified object set (MOS), and new object set (NOS).

transactions in the log. Figure 3-1 depicts an example tentative transaction log with
tentative transactions 1 through n labeled as 17T} to T'T,,. Tentative transactions are
logged in the order in which they are committed by the application so 7T} was the

first transaction to be committed while disconnected and T'T,, was the last.

Tentative Transaction

The model used in connected Thor has the FE maintain a transaction log per trans-
action. This keeps track of objects read, modified, and created during the trans-

action. When the application commits the transaction, during connected operation
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this transaction log is directly translated to a commit request to the OR. But while
disconnected, the transaction log is converted to a tentative transaction which is then
saved in the tentative transaction log. A tentative transaction consists of commit sets
and the saved states of modified objects.

Commit sets are sets of object references and data to be sent to the OR in a
commit request. There are three commit sets saved in a tentative transaction: the
read set (read object set = ROS), write set (modified object set = MOS), and new
set (new object set = NOS). The definition of these sets is simple for a connected
FE. The ROS is the set of orefs for persistent objects read by the transaction. The
MOS is the set of orefs and new fields of persistent objects that were written by the
transaction and the NOS is the set of orefs and fields of new objects created by the
transaction that are reachable by some persistent object.

The definitions of these commit sets change for tentative transactions. In a ten-
tative transaction the ROS may consist of both persistent objects and objects that
are tentatively persistent. An object is tentatively persistent if it was created by some
previous tentative transaction in the log that was tentatively committed but not yet
committed at the OR and is logged. This also applies to the MOS in a tentative
transaction - it can have both persistent and tentatively persistent objects.

Objects are tentatively persistent since for a given tentative transaction, 77T}
where 1 < k < n, ROS; may contain objects from NOS; where 1 < 1 < k. To
TT) the state of the objects at the FE cache should look as if TT; had succeeded
and therefore any objects from NOS; should be considered persistent. But since the
objects from NO.S; have not actually been committed at the OR, they are considered
tentatively persistent. This difference affects the logging of objects which is done
on-the-fly as application code reads, modifies, or creates objects.

Figure 3-1, shows examples of ROS, MOS, and NOS sets for tentative transactions.
In T'T5, the object g is in ROS; since it is tentatively persistent from 7777. Similarly
in TT,,_1, both ROS,,_; and MOS,,_; contain object e which is tentatively persistent
from T'T.

Translating the transaction log into a tentative transaction is not completely
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straightforward. When a newly created object is logged in the transaction log, it
is not yet known whether that object is reachable by some persistent object. So the
newly created objects logged in the transaction log may contain objects not reachable
by some persistent object. Since the NOS in a transaction is defined as the set of
orefs and fields of new objects created by the transaction that are reachable by some
persistent object (or tentatively persistent) , the NOS can not simply be the same
set of objects as the newly created objects in the transaction log. The reason for
only saving objects reachable by some persistent or tentatively persistent object in
the NOS is that it minimizes the space needed in the log and it also minimizes the
number of objects sent to the OR in a commit request. If objects not reachable by
any persistent object are committed at the OR, they would eventually be garbage
collected at some future time. In addition, objects not reachable by a persistent ob-
ject can be discarded at the FE to save space after a tentative commit as long as the

application did not have any handle on them.

Therefore, when an application tentatively commits, it is necessary to create the
NOS for the tentative transaction by traversing the references of the MOS. By it-
erating through each of the objects in the MOS, references to newly created (or
non-persistent) objects can be identified and placed into the NOS. In addition, the
references of objects added to the NOS must also be traversed since they may also
potentially have references to newly created objects. It is sufficient to only traverse
the MOS to create the NOS since an object will be included in the NOS only if it is
referenced by a persistent object. Since the objects were newly created, some persis-
tent object must have been modified in order to reference the new object. Therefore
an object will only be reachable from some persistent object if it is reachable by some

reference in an object in the MOS.

Commit sets store objects using only orefs. An oref is an id for an object by which
the OR refers to the object. It identifies an object including the page and segment in
which it resides in the object store. An object may have references to other objects
in its fields. These references can either be in the form of ROT entries (pointers to

local memory as described in Section 2.3.2 or in the form of orefs. But commit sets
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sent between the FE and OR must have objects with references only in the form of
orefs since pointers to local memory will not make sense at the OR. The process of
converting orefs to local memory pointers is known as swizzling and reversing the
process is known as unswizzling [4]. In a tentative transaction, commit sets must have
all of their references to objects unswizzled before they are sent to the OR since the

OR will not understand local pointers from the FE.

Unswizzling of objects takes place when a transaction is tentatively committed
and the tentative transaction is created from the transaction log. In order to store
objects in the commit sets unswizzled, it is necessary to assign orefs to newly created
objects since they are not yet known to the OR and do not yet have orefs. Unswiz-
zling references is especially important in disconnected operation since unswizzling a
reference allows for the entry in the ROT corresponding to that entry to be freed (by
decreasing the references to that ROT entry to 0). Free entries in the ROT are needed
for allocating new objects and the FE could potentially run out of free ROT entries if
none are ever freed during disconnected operation. Freeing ROT entries occupied by
references to persistent objects can help to prevent this. A downside to unswizzling
references on a tentative commit is that it will slightly degrade performance of the
next transaction if the next transaction accesses objects that were just unswizzled
since those objects will then be swizzled again which does incur some overhead.

Alternatively, object references could be unswizzled right before the commit sets
are sent to the OR during a reconnect. Then references would be stored as swizzled
in the tentative transaction log. However this would cause potentially useful ROT
entries to be occupied and also would make moving ROT entries hard.

As mentioned, the NOS set can not be directly created from the transaction log
since only newly created objects reachable from a persistent object should be included
in the NOS. This process can also be used as a point for unswizzling object references
since all of the references are traversed at this point.

One complication of unswizzling references to objects is that since newly created
objects are assigned temporary orefs, these temporary orefs must be used throughout

the tentative transaction log. So for example, 7T} creates the object a, assigns it a
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temporary oref of 10274 and 71T, reads object a. Since temporary orefs do not encode
any sort of location as orefs do (because newly allocated objects are allocated from
a heap of free memory and not inside an organized arrangement of pages), object a
will be referenced as a location in memory at the FE before T'T; is created. When
TT, is stored into the tentative transaction log, references to ¢ must be updated to
the correct temporary oref assigned to it in 777 (10274). It is necessary to update
references to the object because once the tentative transaction log is replayed, if T'T}
commits, the state of 7T, should be as if TT; had committed when he tentative
transaction was stored.

In order to be able to handle the abort of a tentative transaction, each tentative
transaction in the log must also save the state of each object in the MOS prior to
its first modification. Objects in the MOS may be modified multiple times but only
the initial state of the object before any modifications is saved in the log and only
the state after the final modification in the duration of that transaction is saved in
the MOS. An alternative to saving the state of each object in the MOS prior to
its modification is to save only the state of a modified object if it has not already
been in the MOS of some previous transaction in the tentative transaction log. For
example, if tentative transaction, 7Ty has MOS; = {a, b, ¢} and objects a and b were
modified in TT;_; but object ¢ had never been modified by any tentative transaction
in the log, TT; .. TTy 1, then only a copy of object ¢ will be saved with T7T;. The
reasoning behind this option is that in order to save as much space as possible, it is
not necessary to keep saved states of modified objects if these states can be retrieved
from previous tentative transactions in the log. However for this project, space was
traded for time because in the case of an abort, it is convenient to have the old states
of the modified objects on hand rather than having to search through the log for the
states needed to handle the abort.

3.1.3 Reconnect

When the FE reconnects with the OR, synchronization of the log occurs before the FE

can proceed with any connected operations. Synchronization with the OR consists of
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replaying each tentative transaction in the order in which they were committed while

disconnected, handling any aborts, and also handling invalidations.

To replay a tentative transaction, the FE will send to the OR a commit request
containing the commit sets stored for that tentative transaction in the tentative trans-
action log. However at the time of sending a commit request to the OR, it is necessary
to update temporary orefs to permanent orefs. Permanent orefs are assigned by either
checking for free space in the current pages at the FE or contacting the OR for a page
with space for new objects (and thus with new orefs) if there is no space at the FE.
Since acquiring new orefs requires communication with the OR, while disconnected
it is necessary to assign temporary orefs to newly created objects instead. However
it could be argued that newly created objects should get permanent orefs when dis-
connected if they can (by using the space on the pages at the FE) and then only get
temporary orefs if there is no space. But this would complicate the replay process
since only some new objects would need new orefs and some would already have new
orefs. So similar to temporary orefs, for an object that is assigned a permanent oref,
it is necessary to update references to that object in subsequent tentative transactions
(assuming that the tentative transaction committing that object does commit) in the
log before their commit sets are also sent to the OR. Once the commit sets have been
updated with permanent orefs for newly created objects, the sets are sent to the OR

in a commit request.

The OR will then check if the commit request should be committed or aborted.
The request will abort if an object in the read or write set of the transaction has
been modified by another FE. The OR will send a message back to the FE indicating
whether or not the transaction was committed. When the FE receives the OR’s
response to the commit request it will either have to deal with a commit or an abort.
On a commit the FE must install newly created objects from the tentative transaction
into its persistent cache. On an abort, the FE must revert the state of the FE back
to its original state before the tentative transaction and delete newly created objects
from the volatile heap. To revert the state of the FE back to its original state before

a tentative transaction, saved copies of modified objects per tentative transaction in
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the log are used to change modified objects back to their previous state.

When a tentative transaction is committed, it is handled as any normal connected
commit. The objects in the NOS of the commit request must be installed into the
persistent cache of the FE. Since the newly created objects were assigned permanent
orefs prior to sending the commit request, the assignment of permanent orefs also
allocated space in the persistent cache for the new objects. The formerly volatile ob-
jects must be copied from the volatile heap to the appropriate pages in the persistent
cache.

When a tentative transaction is aborted, it is also handled similarly to normal con-
nected aborts. Space allocated in the persistent cache for objects in the NOS must be
freed and volatile objects should be cleared from the volatile heap. In addition, the
state of any modified objects from the tentative transaction must be reverted back
to their state before the tentative transaction by using the saved information in the
tentative transaction log. But for a tentative transaction, in addition to reverting
modified objects to their state before the tentative transaction, subsequent tenta-
tive transactions that depend on that tentative transaction must also be aborted.

Tentative transaction 77} depends on 17T} where k > [ if:
(ROSK,NMOS; # 0)V (MOS,NMOS; # 0)V(ROS,NNOS; #0)V(MOS,NNOS; # 0).

This defines dependency since 77T} can not be committed if it read or modified objects
that were in an invalid state (as indicated by the abort of T7;). Waiting for 7T} to
be aborted by the OR is not desirable since if 77T} contains objects from NOS; in its
commit sets then the OR will not be aware of these objects and it is better to simply
remove 1T}, from the log before it is sent to the OR in the synchronization process.
In checking for dependencies, if a subsequent tentative transaction in the log aborts
due to its dependency on an aborted transaction, then any tentative transactions
dependent on it must also abort. This means that dependency checks will scan the
entire log and abort any transactions that are directly or indirectly dependent on the
aborted transaction. One tricky part of this is the order in which the state of objects

in a tentative transaction’s MOS are reverted to their saved state or undone. For
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example, TTy, with MOS, = {a} aborts. TT; with MOS; = {b} is dependent on T'T}
because ROS; = {a,b}. TT,, with MOS,, = {b} is dependent on TT; because ROS,,
= {b}. So here is a chain of dependencies and after all of the dependent aborts have
been processed, the state of object a should be as it was before T'T), and the state of
object b should be as it was before 177;. In the case of object b, it is important that
its state be undone backwards, first to the saved state in 177}, and then to the state
saved in T'T;. Therefore when aborts are processed, the dependencies are found in a
forward scan but undoing the state of each is done in a backwards process through

each of the dependent tentative transactions.

After the FE processes an abort by reverting the state of modified objects and
deallocating space in the persistent cache, it must notify the application of the failure.
It does this by simply returning to the application a set of tentative transaction id’s for
each tentative transaction that aborted. This is done after all tentative transactions
in the log have been tried since upon notification of an abort, an application may
wish to perform conflict resolution by committing another transaction which would
complicate the replay of the log. The application can match these id’s with id’s
returned by the FE on tentative commits. These id’s can then be matched with any
context that the application may have saved. The usage of this information to help in

conflict resolution is discussed in section 3.2.3 on application level conflict resolution.

Once the entire log of tentative transactions has been processed by sending each
of the tentative transactions to the OR in a commit request and then processing the
response, invalidations must be dealt with. In the process of replaying the tentative
transactions, the FE may receive invalidation messages containing orefs of objects
that have become stale (since these messages are piggybacked with commit request
responses). These stale objects may or may not have caused some of the tentative
transactions in the log to abort but in any case, those objects must be marked invalid
in the FE ROT and persistent cache. In addition, these messages can not be processed
as they are received since they may invalidate objects used in the commit sets of
a tentative transactions that have not yet been sent to the OR. For example, if

TT, modified object a, but an invalidation message for object a arrives with the
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response to 177 and the FE acknowledges that it has seen the invalidation of a, then
the commit request for 77, will succeed (assuming that no other object in its read
or write set is invalidated in the time between the acknowledgement and the OR
receiving the request). This could potentially cause an unexpected state for object a
unless, in the processing of the invalidation message, the FE also aborts any tentative
transactions that read or write the objects in the invalidated set of objects. While
this is a possibility, processing the invalidations after the entire log has been replayed
simplifies the implementation and still maintains the consistency of the objects since
in cases such as the example given, the OR will abort any tentative transaction
commit request that contains invalidated objects in their read and write sets (as long

as the invalidation message has not been acknowledged).

To process an invalidation, the FE must mark the object in the ROT and persistent
cache as invalid. When an object is invalidated, any access to that object from the
application will cause the object to be refetched from the OR to get the current
version of the objects. Additionally invalidations are processed before the application
receives the list of failed tentative transaction id’s. The reason for this is so that any

resolution of the failures will have the correct state of objects.

Figure 3-2 depicts the reconnect process for a sample scenario. The tentative
transaction log in this case contains three tentative transactions. 77} is aborted
since some other FE made a modification to object a which this FE has not yet
seen. Object a is in ROS; and MOS; so the OR must abort 77T;. In addition
the OR also send an invalidation message for object a piggybacked with the abort.
Since MOS; N NOS; # 0, the FE will automatically abort TT, without even sending
a commit request to the OR for it. 773 is committed successfully. Then the FE
processes the invalidation message and sends the acknowledgement to the OR. Finally
the FE passes back to the application the list of tentative transaction id’s that failed

to commit.
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Figure 3-2: Each tentative transaction is replayed in a commit request to the OR in
the order in which they were tentatively committed while disconnected. The OR re-
sponds with either a commit or abort and invalidations could possibly be piggybacked
at the same time.
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3.2 Application Support for Disconnected Opera-
tion

In addition to the support provided by the FE for disconnected operation, the appli-
cation must also provide support for disconnected operation, namely support specific
to application semantics. This support can be divided into the three components of

prior to disconnection, operating disconnected, and reconnecting.

3.2.1 Preparing for Disconnect

Application specified hoarding queries are used to prepare the client for disconnection
from the OR. A hoarding query is an operation on the persistent objects in the
database that causes objects to be fetched or hoarded from the OR into the FE
cache prior to disconnecting from the OR. The hoarding query should try to bring
objects into the cache that will be of interest to the user while running the application
disconnected. Ideally, the user will never request an object that does not exist in the
cache while disconnected. Therefore what a hoarding query brings into the cache can

really only be determined by the application and perhaps the user.

There are several issues with hoarding queries: what should be hoarded, where
should the queries be defined, who should call them, and when should they be called?
One possible way to design a hoarding query is to have each class in the schema
for an application specify its own hoarding query which reads each of its fields (thus
causing those objects to be fetched into the cache if they are not already there). Then
starting with the root object of an application, prior to disconnection, the application
can call the hoarding query of the application root which will recursively traverse the
entire reference graph of the persistent objects for that application. This provides
good spatial locality of references because if an application accesses an object it is
likely that it will also access that object’s fields. However this may not be ideal since
it could potentially fetch unwanted objects from the OR since objects are fetched

inside pages of objects. For large applications, the user may also not want all objects
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for a particular application but only a subset of them. For example, in a calendar
application the user may want only the objects in his calendar and not all of the
objects in all of the calendars in the database. Therefore hoarding queries may be
specified at different granularities: at the root of the application, the root for a
particular user, or just one object. The difficulty with this then becomes how to
allow the user to select one of these options in an understandable manner. However
this is beyond the scope of this project. But it is possible to specify hoarding queries
in any of these manners.

An application in Thor can prepare for eventual disconnection by always executing
a hoarding query on startup. This way if disconnection is unexpected, the application
will at least have some set of data to work with while disconnected. However, in
the current implementation, disconnecting and reconnecting are application specified

events.

3.2.2 Operating Disconnected

When disconnected, requesting to commit a transaction returns a tentative commit
with an id to identify that tentative transaction. An application will use this id to
identify the tentative transaction if it should abort. The application will associate
with this id, context of the operation associated with the tentative transaction. This

context includes:
e operation type
e parameters
e priority

Each operation type also has an associated resolution function which attempts to use
the saved parameters from the tentative transaction context to resolve the a failure
to commit. Whether or not the resolution function is called is based on the priority
of the particular operation. The priority will tell the application how many times

an operation should be retried before the user is notified and consulted for manual
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resolution. A priority can be set in a number of ways. The user can be the sole point
for determining a priority or the FE can also be involved in determining priority by
counting the number of dependent transactions that a transaction has. So the greater
the number of dependent transactions, the greater the priority (and retries).

This extra support is necessary since Thor only provides a notification of conflicts
and does no resolution. In addition the FE is not aware of type or any other high-level
context information once the commit sets are created - it is just a set of objects with
fields and orefs. In order to make any sense of an abort, the application must save

context to help with this.

3.2.3 Reconnect

On reconnect, as each tentative transaction is replayed to the OR in a commit request,
the response received may result in an abort. Once the entire tentative transaction
log has been replayed, the application will receive a list of these aborted transactions
and will then have to deal with their resolution. It does this by iterating through
the list of failed transactions and calling their resolution functions. In the process of
calling a resolution function, it is possible that the transaction will be aborted again
and a series of nested calls to resolution functions and aborts may occur. In order to
prevent the case where a transaction is repeatedly retried forever, the priority of the
transaction is used to limit the number of retries.

To resolve a conflict, the application has the flexibility to do a variety of resolutions
since the application had control over where conflicts were detected and also has saved
context for each failed transaction. While Thor provides conservative abort semantics
that guarantee serializability of operations on shared objects, the fact that retries may
work since invalidation processing gives the FE the correct state during a conflict
resolution, actually allows applications that do not require Thor’s conservative abort

semantics to achieve their relaxed semantics.
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Chapter 4

Evaluation

This section discusses how well disconnected operation in Thor achieves the goals
of consistent shared data and flexible conflict resolution through the development
of a sample application on top of the Thor framework. In addition, an analysis
of performance is presented to discuss the overhead associated with disconnected

operation.

4.1 Sample Client Program: A Shared Calendar

A shared calendar system was implemented as an application using the disconnected
Thor framework described in section 3. The calendar system maintains a database
of calendars where each calendar is associated with a user but multiple users may
modify a single calendar. Concurrent modifications to a single calendar are possible.
This is a desirable property in many real-life situations such as corporations where an
assistant and his boss may both wish to modify the boss’s calendar. In the calendar
system implemented on top of Thor, a user can add and delete events to and from a
calendar. Each event has an associated day and time.

The essential aspect of the design of the calendar application was the data mod-
elling phase or development of the application’s schema. The schema is the organi-
zation or structure of the data as represented in the database. An important aspect

of the data modelling phase for the calendar application was to consider the effect of
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concurrency on the data. It is especially important in the case of applications in Thor
since Thor detects conflicts at the granularity of an object and therefore the design
of the object-oriented schema will directly impact what conflicts are detected. In the
calendar application, concurrent additions of events to a user’s calendar are permis-
sible so long as they do not overlap in time. The correct behavior is for a conflict to
be detected only when concurrent updates to the calendar modify events that conflict
in time. However, these conflicts are not always significant and in some situations, a
user may want more relaxed semantics. These situations can be accommodated with
the flexible resolution of conflicts.

For the calendar application, the design process showed just how important the
design of the schema is in order to get the correct application conflict semantics. The
first iteration of the calendar design maintained a set of event objects and when a
user added an event, this event was simply added to an array of events in the calendar
object. This is depicted in Figure 4-1(a). However, by designing the calendar in this
way, conflicts would be detected on the entire calendar object. For example, if one
disconnected client modified the calendar by adding an event and while that client
was disconnected, another client also added an event to the calendar, then these two
updates would conflict since they both modified the calendar object (the number of
events would have changed in addition to the events array). While this behavior
was correct in terms of maintaining a consistent set of data, since operations on the
calendar would be serializable, it did not capture the correct calendar semantics for
a conflict. In addition, the granularity at which conflicts were being detected caused
more conflicts to be detected than necessary since any concurrent modifications to

the calendar would be considered a conflict.
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Figure 4-1: (a) Initial calendar schema design that caused conflicts to be detected
on any concurrent modifications of the calendar. (b) Revised calendar schema design
that causes conflicts to occur on time slots according to correct conflict semantics for
the calendar application.

To achieve the correct calendar conflict semantics in the calendar application, the
schema was redesigned to detect conflicts at the granularity of time slot objects rather
than the entire calendar object. This is depicted in Figure 4-1(b) where the calendar
is a set of time slot objects and each time slot can be assigned to some event. With
this design, if two users concurrently modify the same time slot object, then a conflict
will be detected by Thor. This is the correct semantics for a conflict in a calendar,

namely when two appointments are made for overlapping times. However since the
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user may want to allow this at times, it is important to consider the conflict resolution
and the different properties that a user might want to be able to have in his calendar.

This will be discussed later in the section.

Both of the designs for the calendar showed how consistency is maintained across
multiple clients even when clients disconnect. Tentative transactions save the calendar
operations while the users are disconnected and Thor’s FE replays these transactions
upon reconnection. This method gives fewer guarantees to a disconnected user but
still maintains consistent data at the Thor OR. For example, if one user caches a
copy of the calendar and another user caches an identical copy of the calendar both
from the OR, and both users modify their cached copy of the calendar while discon-
nected, then there may be a conflict. With the second design of the calendar, we
maintain consistency in addition to getting the correct conflict semantics. Consis-
tency is maintained since multiple users can concurrently add events to the calendar
without having a conflict as long as a transaction does not read stale objects in the
calendar. An additional factor to consider in the calendar application design is that a
transaction that writes an event should be careful not to include reads of other time
slots. This requires that the application developer be very careful in the organization
of commit points in the application. For example, in a transaction that adds an event
to the calendar, the user can not also read all of the objects in the calendar. It is
okay to read only the slot that should be modified and any other dependent slots,
however, it should not read all of the time slots. This would cause the same conflicts

to happen as the first design!

Conflict resolution in the calendar application is flexible since it was possible for
the application to have control over where conflicts were detected. In the case of the
calendar, we know that conflicts are over time slots, so if a conflict occurs, we know
it is because another user has already modified that same time slot. It is then up to
the application, how to deal with this. In order to be able to deal with a conflict the
application needs to understand the context for a transaction. Therefore as discussed
in section 3, the calendar application saves a description of the high-level operations

made by the transaction and any arguments to that operation.
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Using the saved context and having fine-grained control over conflict detection
through the design of the application schema, any number of policies could be imple-
mented to resolve conflicts. In the case of the calendar some of the possible resolutions

are:

e assign tags to events that determine whether or not it can overlap with another
event, if it can then resolve the conflict by allowing the overlapping events in

the time slot

e have the user suggest several times when entering an event and in the event
of an abort for the first-choice time slot, retry entering the meeting with a

second-choice time slot

e assign priorities to events and delete the conflicting event if it has a lower priority

than the one that was aborted, then add the aborted event into the calendar
e present the conflicting events to the user and ask the user how to proceed

Clearly there are many possible resolutions. In this list, the first three could be
considered automatic since they could be implemented without ever having any user
intervention during the processing of aborts after a reconnect. However, in the cases
in which automatic resolution is not possible, manual resolution can be used by
asking the user. And as discussed in Section 3.2.3 the first option actually allows the
application to have more relaxed conflict semantics since overlapping events could be
accommodated - this may be actually be desirable in some cases. Yet the design of

the system also accommodates applications with very strict consistency requirements.

4.2 Performance

Providing support for disconnected operation in Thor comes with an overhead in both

space and time. This overhead varies by the following factors:

e number of tentative transactions in the log
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e read:write:new object ratio in the commit sets
e contention: number of aborts

The remainder of this section will discuss the overhead of disconnected operation in
Thor in detail with a number of experiments that make use of the OO7 benchmark.
The details of this benchmark are described in [3]. Briefly, the OO7 benchmark
provides a comprehensive test of OODBMS (Object-Oriented Database Management
System) performance. It is organized into a library of Composite objects and a tree
of objects where the leaves of the tree contain references to randomly selected objects
from the library. Each Composite object also contains a graph of Atomic objects
which reference one another via Connection objects. The actual benchmark is a series
of traversals on the tree and queries that exercise different parts of an OODBMS.

In comparison to connected operation in Thor, the design of disconnected opera-
tion in Thor has several differences that affect performance. These differences occur
both while operating disconnected and upon reconnection. Experiments were con-
ducted with a single FE and OR both running on the same machine. The FE cache
size for all experiments was 24MB. The machine is a 450 Mhz Pentium II with 128MB
of RAM running Linux Redhat distribution 6.2. Since most tests are measuring the
overhead of disconnected operation which is not associated with network costs, the
running the OR and FE on the same machine does not play a significant role in the
results.

Each experiment uses an OO7 traversal to compare connected with disconnected
operation. Connected operation is nearly identical to Thor before the modifications
to support disconnected operation were added. The application operates on objects
as usual and then commits them to the OR. During connected operation, the applica-
tion simply waits for the response to a commit request from the OR. In disconnected
operation, a commit really has two parts. The first part is to tentatively commit the
transaction while disconnected. This places the transaction in the tentative trans-
action log. The second part is to reconnect and send the tentative transaction from

the log to the OR as a commit request. So when comparing disconnected operation

92



with connected operation, it should be noted that disconnected operation consists of
two time measurements - the time to tentatively commit and the time to reconnect
- whereas connected operations consists of the total time between an application’s

request to commit a transaction and the time it receives a response.
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Figure 4-2: Comparison of average time per transaction to commit connected versus
time to tentatively commit for 10 to 100 tentative transactions in the log. An OO7
read-only T1 traversal workload was used. Tentatively committing is faster since it
does not require communication with the OR.

While disconnected, a tentative commit request results in the unswizzling of the
ROS and MOS and the creation of the NOS. This is identical to connected operation.
But rather than send the commit sets to the OR as in connected operation, since
the FE is disconnected, the commit sets are saved to the tentative transaction log.
This means that a tentative commit actually takes less time than a connected commit
since there is no communication with the OR. Figure 4-2 depicts the results of an
experiment that confirm this. The experiment used the OO7 T1 traversal which is a
read-only traversal of the object tree. Figure 4-2 shows that for the workload used,
there was on average a 19.3% improvement in the response time for a commit while

disconnected versus while connected. This was expected because the commit is only
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tentative and no communication was made with the OR. The time for a reconnect is
discussed in the following section. Additionally, Figure 4-2 shows that the time for a
commit in both the connected and disconnected case stays constant with a varying
number of transactions. This is correct since the time for a commit is not dependent

on the number of transactions in the log.

Upon reconnection, replay of the log incurs two major costs that do not occur
in connected commits. However, these overheads occur only if objects are modified
or created by transactions while disconnected. To verify this, an experiment using
OO7 T1 read-only traversal was used. Figure 4-3 shows the results for the time to
commit versus the time to tentatively commit and reconnect for a varying number
of transactions between 10 and 100. It shows that the times are relatively the same
and both grow linearly with an increasing number of transactions. Interestingly, the
time for a tentative commit and reconnection perform slightly better than connected
commit. This may be due to a gain in network performance by having a group
of messages sent to the OR in succession upon reconnect rather than spread out
between transactions while connected. The following will discuss the overhead that

occurs when objects are modified or created.

The first overhead incurred is that in preparation to send the tentative transaction
as a commit request to the OR, newly created objects that have temporary orefs and
these must be updated to be new permanent orefs. Getting permanent orefs is a cost
that is also incurred during connected commits, however objects in the MOS and
NOS need to be updated with these new orefs. This updating incurs the extra cost
of a second traversal of the objects in the MOS and NOS.

While the cost of updating of orefs should only be incurred if new objects are
created while disconnected, even when no new objects are created, a cost is incurred
if objects are modified. This is due to the implementation of the update procedure
that will traverse the MOS of a tentative transaction to check for any temporary orefs
even if there were no new objects created while disconnected. This could be fixed by
adding a check to each update procedure that checks whether or not there have been

any new objects created using the new object table. This was not done because the
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Figure 4-3: Comparison of time to commit connected versus time to tentatively com-
mit and reconnect for 10 to 100 tentative transactions in the log. An OOT7 read-only
T1 traversal workload was used. There is little or no overhead when only read-only
transactions are made while disconnected.
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Figure 4-4: Comparison of time to commit connected versus time to tentatively com-
mit and reconnect for 10 to 100 tentative transactions in the log. A read/write OO7
T2a workload was used.
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case where no new objects are created while disconnected was believed to be a special
case and that it would be most likely that a disconnected transaction would create
new objects, in which case the MOS would have to be checked for references to new
objects with temporary orefs.

Figure 4-4 shows the difference between the time for a connected commit ver-
sus the time to tentatively commit and reconnect a transaction when no new ob-
jects are created while disconnected. The workload for this data used the OO7 T2a
traversal, which consists of both reads and writes but no new objects giving a 12:1:0
Read:Write:New object ratio in the each transaction’s commit The average overhead
for disconnected operation in the cases shown in Figure 4-4 is 8.74%. This traversal
shows the overhead of reconnecting with varying sized logs that have only modified

objects and no new objects. The overhead with new objects is discussed next.
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Figure 4-5: Comparison of time to commit connected versus time to tentatively com-
mit and reconnect for 10 to 100 tentative transactions in the log. An OO7 Tinsert
workload was used. log.

Figure 4-5 shows the overhead for updating temporary orefs when new objects are
created while disconnected. The workload used for this figure was an Insertion query

on the OO7 database where 5 new Composite objects are created and then for each
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new Composite object, 2 references to the object are inserted into randomly selected
leaves in the tree of objects (giving a total of 10 new references to Composite objects
in the tree). Each transaction consisted of one Insertion query. The average overhead
for disconnected operation in the cases shown in Figure 4-5 is 36.32%. The growth of
the time to tentatively commit and reconnect is linear with respect to the number of

tentative transactions. However it does grow at a faster rate than connected commits.

The second major source of overhead from disconnected operation in Thor comes
from aborts. If a transaction is aborted, the log must be updated to abort any de-
pendent transactions. This dependency check has the extra cost of scanning the log
with a backwards (as described in Section 3) undo each time an abort happens. On
an abort, each subsequent transaction in the log must be scanned to check if that
transaction is dependent on the one aborted. Additionally, if any subsequent trans-
actions in the log are aborted, their dependencies must also be checked. This ends
up having an exponential time for performing a dependency check scan on an abort.
In the worst case, since dependent aborts are removed from the log, if none of the
aborts are dependent, then each abort will scan a maximum number of transactions

in the log.

Experiments were conducted in both low and moderate contention (abort rate)
environments similar to experiments made by Adya for concurrency control studies
Thor [1]. The experiments make use of the OO7 T2a traversal rather than the Tnew
since the Tnew traversal creates dependent tentative transactions. By using the T2a
traversal both the low and moderate abort rate experiments have no dependencies
between aborts to show the worst case performance. Figure 4-6 shows the results
for an OO7 T2a traversal with a 5% abort rate which is considered low contention.
For cases in which 5% of the number of transactions was not an integer, the floor
was taken. So for example, a log of 10 tentative transactions has no aborts and a
log of 70 tentative transactions has 3 aborts. However, the overhead for disconnected
operation with 5% aborts is not clearly exponential compared to connected operation.
Figure 4-7 shows the results for an OO7 T2a traversal with a 20% abort rate which

is considered moderate contention. The growth for a moderate abort rate is also
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Figure 4-6: Comparison of time to commit connected versus time to tentatively com-
mit and reconnect for 10 to 100 tentative transactions in the log. An OO7 T2a
workload was used with a 5% abort rate.
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Figure 4-7: Comparison of time to commit connected versus time to tentatively com-
mit and reconnect for 10 to 100 tentative transactions in the log. An OO7 T2a
workload was used with a 20% abort rate.
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not clearly exponential for disconnected operation. So, to take a closer look at the
overhead of aborts on reconnect time, Figure 4-8 shows the total reconnect time for
10 to 100 tentative transactions in the log. By looking at only the reconnect time
which includes the processing of aborts, the 5% abort rate is more clearly exponential
than in Figure 4-6 since the costs of tentatively committing are not included and the

cost of processing aborts during the reconnect become more pronounced. Comparing
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Figure 4-8: Total reconnect time for both low and high abort rates for 10 to 100
tentative transactions in the log. An OO7 T2a workload was used with a 5% abort
rate for low contention and a 20% abort rate for high contention.

the reconnect time of the T2a traversal with low contention to the one with moderate
contention reveals that their performance is comparable for lower numbers of tentative
transactions in the log. Moderate contention has longer reconnect times for 80 to
100 tentative transactions in the log whereas reconnect times with low and moderate
contention for 10 to 70 tentative transactions in the log are comparable. The similarity
of the two for 10 to 70 tentative transactions in the log is likely due to experimental
error since varying network conditions can affect the performance of the reconnect.
The time to reconnect for 80 to 100 tentative transactions in the log begins to show

longer time for moderate contention over low contention due to the slight improvement
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of disconnected operation over connected operation for read-only transactions (as seen
in Figure 4-3). The improvement for read-only transactions becomes outweighed by
the overheads of the writes and aborts.

Referring to Figure 4-4, the total time to commit connected or tentatively commit
and reconnect for each of the different sized logs is actually comparable to the results
of experiments with aborts. Therefore for the abort rates and number of transactions
in these experiments, does not show a high cost for abort scans. However, since
Figure 4-8 does indicate and exponential trend in growth with an increasing log size,
the cost of abort scan may grow more rapidly for logs with more than 100 tentative
transactions.

While the current implementation of abort scans in the design of disconnected
operation in Thor indicates an exponential running time, the implementation could
be modified to not indicate such a high cost. It is possible to process aborts doing
only a single pass over the log by saving information along the way about which
objects have been undone by a transaction due to an abort. Dependencies can then
be checked against this set of already undone objects in order to abort dependent
transactions. A backwards undo is avoided since the set of undone objects is carried
along the way. Therefore the cost of abort scans is not inherent to disconnected

operation and can be overcome by changes in the implementation.
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Chapter 5

Related Work

Providing consistent shared data in the presence of disconnected operation is not a
new problem. Many different systems have been implemented that support discon-
nected operation and the sharing of data. Some of these include Bayou, Rover, and
Coda as discussed in Section 2. Having discussed the design of disconnected operation
in Thor and evaluated its effectiveness in achieving consistent shared data with flex-
ible conflict resolution, this section revisits each of the systems described in Section
2 to see how they compare.

In general each system uses a similar notion of “tentative” data for data modified
while disconnected but has different methods for handling concurrency and conflicts.

Coda supports disconnected operation but it is oriented around a file system.
Conflicts are detected only at the granularity of files which gives an application much
less control over the semantics of conflicts. Thor on the other hand, can be used
for a variety of applications where data easily fits into an object model where ob-
jects are small. However if an application is concerned over file-sharing such as in a
collaborative document editing system, Coda may actually be a more suitable choice.

Like Bayou, Rover does not provide for any built-in notion of consistency. It is
up to the application to define in its procedures checks for conflicts and procedures
to resolve them. Thor takes some of the burden of this away from the application
by having built-in conflicts detected on objects. While it is true that the application

does play a role in defining conflicts since the application schema must be carefully
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designed to achieve the correct conflict semantics, Thor provides a framework with
which the application can work. In addition this framework is a familiar one since it
is essentially the framework of an object-oriented programming language.

Bayou and the approach to disconnected operation in Thor are similar in that
application-specific conflict detection and resolution are facilitated. Bayou’s dependency-
check procedure is analogous to schema design in Thor since the manner in which the
schema is designed, controls what conflicts are detected. Bayou’s merge-proc function
is analogous to application conflict resolution in Thor. The difference between the
two is that there is no built in notion of consistency in Bayou. While Thor allows
for an application to have control over where conflicts will be detected, the serializ-
ability of data will not be violated at any point. Thor could perhaps benefit from
Bayou’s notion of merge-procs. Since Thor applications must now include all conflict
resolution code inside the application, it would be beneficial to have in Thor, also a
framework for applications to write resolution functions or perhaps even select from
a set of common resolution functions. Future work in Thor might investigate the

development of this framework.
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Chapter 6

Future Work and Conclusions

There is still much research that can be made into disconnected operation in Thor.
This work has provided a basis upon which more applications can be built to explore
the different schema designs necessary to get correct conflict semantics in a variety
of applications. With a variety of applications a set of common features for saving
context and resolution procedures may be extracted. Ultimately, this information
could be used to develop a middle layer in Thor which offers services to applications for
transaction context saving and conflict resolution. For example, if it were important
in all applications for arguments to an operation to be saved, it might be useful to
add this functionality to the compiler for Thor rather than having each application
produce the same code for saving arguments whenever an operation on a persistent
object is invoked. Future work on developing more applications could determine
whether or not such a layer of application services would be useful in Thor.

In addition, there are many different schemes that can be developed on top of
disconnected operation in Thor. One possible scheme which is currently being in-
vestigated by Shrira et. al. [19] is to allow clients while disconnected to fetch data
from one another. This would allow clients to get up-to-date data and reduce the
number of aborts upon reconnection or just get data that they did not cache before
disconnecting. Another possible scheme is to investigate being able to commit data
while disconnected. If a user who disconnects owns a piece of data or knows that no

one else will be modifying the same data, a scheme could be devised where that user
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could have the right to actually commit operations while disconnected, thus bypass-
ing any tentatively committed state. Even further, if a group of users disconnect,
they collectively could decide whether or not to commit an operation on a piece of
data that only they will modify using some type of voting or quorum scheme.

There are many possible directions for future work with disconnected operation
in Thor. This work has provided a different way of looking at the management of
shared data in the presence of disconnected operation. It provides a framework in
which applications can define conflict detection at the granularity of an object by us-
ing the flexibility of object-oriented schema and as a result allows for the application
to have enough information to intelligently resolve conflicts. Disconnected operation
in Thor suits a variety of applications since it can provide strict consistency rules for
applications that require them such as a banking system or airline reservation sys-
tem. Yet with the framework provided, it also allows applications with more relaxed
consistency requirements to have enough control over conflicts and their resolution to

achieve more flexible consistency semantics.
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