
Lessons from Developing and Deploying the Cricket Indoor
Location System

Hari Balakrishnan, Roshan Baliga, Dorothy Curtis, Michel Goraczko, Allen Miu,
Bodhi Priyantha, Adam Smith, Ken Steele, Seth Teller, Kevin Wang

MIT Computer Science and Artificial Intelligence Laboratory (CSAIL)
http://nms.lcs.mit.edu/cricket/

November 7, 2003

Abstract
The Cricket indoor location project has been active for
four years. We have developed three different versions
of the system. The first version was an early proof-
of-concept (Cricket v0), which led to the first prototype
(Cricket v1). Cricket v1 has seen extensive use by us and
by a few other research groups in the community. Dur-
ing this time, we have learned a number of lessons from
application designers, users, and system maintainers. We
break these lessons into platform flexibility, where we dis-
cuss the Cricket API, embedded software platform, and
hardware interfaces; location accuracy, where we dis-
cuss Cricket v1’s performance and limitations, and de-
ployment issues, where we discuss energy consumption
and system management. We discuss how these lessons
have helped improve the design of the next generation of
Cricket, Cricket v2, whose key features we detail. Like
Cricket v1, the Cricket v2 hardware design and software
will be released as open-source; v2 units will also be com-
mercially available by early 2004. We believe that the
lessons described in this paper will be useful to people
interested in building or using indoor location systems.

1 Introduction
In Fall 1999, we started work on the design and imple-
mentation of the Cricket indoor location system, moti-
vated by the importance of mobile and context-aware ap-
plications in pervasive computing environments and the
poor indoor performance of the Global Positioning Sys-
tem (GPS). The first version of our system, Cricket v0,
was a proof-of-concept research prototype [13]. As we
started deploying Cricket and obtaining users, we imple-
mented a number of refinements and enhancements, lead-
ing to several different subversions of Cricket v1. We dis-
seminated Cricket v1 units to a few groups within and out-
side MIT for research and educational purposes. This pro-
cess occurred over nearly three years, during which time

we learned a number of lessons from the different uses to
which the system was put.

This paper documents these lessons, presented as a
combination of practical anecdotes and quantitative ex-
perimental data. We hope that our experience will be use-
ful to people interested in either using or building indoor
location systems in the future. We have organized the
lessons into three broad categories:

1. Platform flexibility. Cricket was used in several
ways that we had not envisioned in the original de-
sign. These uses led to our understanding differ-
ent types of useful location information, a software
API encompassing this information, and appropriate
hardware interfaces (Section 3).

2. Location accuracy. Many applications require ac-
curate location information and do not handle errors
well. In particular, many applications do not cope
well with high variance in reported location. We dis-
cuss our efforts to improve location accuracy and re-
duce variance (Section 4).

3. Deployment and management. Users generally ap-
proved of Cricket’s decentralized deployment model,
which allowed them to quickly deploy a small-scale
Cricket system and get going. However, Cricket
v1’s energy consumption and configuration meth-
ods taught us that there was significant room for im-
provement before long-term production use became
feasible (Section 5).

We have attempted to be balanced in our evaluation of
Cricket’s design decisions, but apologize for any overly
defensive comments! At this stage, it would be prema-
ture to write a definitive paper on the lessons learned from
the project, because it is still ongoing and we don’t yet
have enough serious users. This paper should therefore
be viewed as a status report and as a summary of what
Cricket v1 did right and wrong in our estimation.

In Spring 2003, we incorporated these lessons into the
design process for the next generation system, Cricket v2.

1

We discuss how Cricket v2’s design addresses most of the
observed shortcomings of the previous version. The hard-
ware design and software for Cricket v2 will be freely
available on the Cricket project’s Web site, and units will
be available for sale by early 2004.

2 Cricket Overview
The original design of Cricket was motivated by four
goals:

1. Scalability: Our goal was to scale well to large num-
bers and high densities of devices requiring location
information.

2. Privacy: We wanted a system that would make it
hard to track users, avoiding the user privacy prob-
lem inherent in previous location systems (e.g., Xe-
rox PARC’s pioneering Active Badge system [24,
11]).

3. Low cost: We wanted to build devices from com-
mercial off-the-shelf components, at a cost of tens,
rather than hundreds, of dollars.

4. Accurate space detection: At first we were inter-
ested only in accurately demarcating boundaries be-
tween application-defined spaces (typically rooms or
parts of rooms), which is sufficient for many appli-
cations (e.g., resource discovery).

Our goals led us to an architecture that was radically
different from existing indoor location systems like the
Active Badge or Active Bat [6], which use passive ceiling-
mounted receivers that obtain information from active
transmitters carried by users. The Cricket architecture
“inverts” the architecture of the Active Badge and Active
Bat systems; in Cricket, ceiling or wall-mounted active
beacons send periodic chirps on a radio frequency (RF)
channel, providing location information to passive listen-
ers.

The listener attached to a host device (e.g., mobile
handheld, portable laptop, sensor, etc.) estimates its dis-
tance from each beacon it hears, and uses these distances
to infer its location. Each beacon sends an ultrasonic (US)
pulse at the same time as the RF message; the listener uses
the standard “time difference of arrival” technique by ob-
serving the time lag between the arrival of the RF and US
signals, to estimate its distance from the beacon.

Qualitatively, the Cricket architecture offers the follow-
ing advantages:

+ Good scalability. The RF and US channel use is in-
dependent of the number of listening devices in any
region; when host devices actively transmit, high-
density deployments are harder to achieve.

+ Ease of deployment. Cricket beacons are easy to de-
ploy; they do not require any infrastructure connect-
ing them back to a base station, and can be placed

with few constraints inside rooms, open areas and
corridors.

+ User privacy. Cricket’s architecture allows a host
device to infer its location without the infrastructure
or any other entity learning that information. While
Cricket by itself cannot guarantee user privacy, it
makes centralized tracking of users hard.

These advantages come at some cost:

− Continuous tracking is harder. In Cricket, a lis-
tener hears only one beacon at a time. Updating the
position of a moving device is more complex than
in a system that simultaneously obtains multiple dis-
tance estimates from the device to known positions.

− Beacon scheduling requires a distributed scheme.
Cricket requires a distributed beacon scheduling
scheme to avoid RF and US collisions at the listen-
ers.

− Energy consumption is potentially higher. Active
beacons tend to consume more energy than passive
ceiling-mounted receivers. However, both architec-
tures require the transmitters or receivers distributed
in the infrastructure to be powered somehow.

2.1 Project Timeline and Current Status
After some experience with Cricket v0 units from the fall
of 1999 through the spring of 2000, we started the de-
sign of Cricket v1 (4 MHz Atmel processor and a 418
MHz AM-based Lynx radio) in the summer of 2000. We
had working hardware by the fall of that year, and a small
number of other users within a multi-group collaborative
effort at MIT by the spring of 2001. By this time, we had
also embarked on the design of the Cricket compass to
provide orientation capabilities. Between Fall 2000 and
Spring 2003, we made several small changes to Cricket
v1, and produced several hundred beacons and listeners
for use by a number of groups, including ourselves. In
early 2003, we started designing Cricket v2 (8 MHz At-
mel processor and a Chipcon CC1000 radio). We have
two different v2 hardware designs, one produced by us
and one produced in collaboration with Crossbow Tech-
nology. Figure 1 shows Cricket v1, the two kinds of v2
boards, and a compass board that attaches to a listener.

The start of our effort on Cricket coincided with a
large, lab-wide research effort in pervasive computing
at MIT and Cricket soon became a core technology in
that effort. Versions of Cricket have been used by sev-
eral groups at MIT for applications including people lo-
cation, multi-player physical/virtual games, human and
robot navigation, stream migration, and also for several
student projects in an undergraduate pervasive computing

2

Figure 1: A few different Cricket units. From left to right: v1, v2, v2 done jointly with Crossbow, and a compass daughter
board. The T-shape of the new v2 units enables them to fit into a compact flash (CF) slot on a handheld or laptop. The v1
and v2 units can function as either beacons or listeners.

course. We have also offered Cricket courses, held at MIT
and in elsewhere.

In addition to groups at MIT we have distributed
Cricket units to researchers elsewhere, including NTT
Labs, Nokia Research, Delta Electronics, the Acer group,
Crossbow Technology, Rutgers University, University of
Washington, Intel Research, Philips Research, and HP
Labs (in addition to using our hardware, the last two have
also made their own versions with different radios). We
have had over a hundred requests from other potential
users for Cricket devices, requests that we have been un-
able to satisfy with our limited production capability.

Our experiences with users and applications has in-
formed our design of Cricket v2. For example, some ap-
plications require spatial information, some require fine-
grained, GPS-style position coordinates, and some bene-
fit from orientation in addition to position. In addition,
location-aware applications are not restricted to mobile
handhelds or laptops—many embedded sensor network
systems and applications require location information as
well.

2.2 Some Cricket Applications
This subsection describes some of the applications that
people have built using Cricket. This is not an exhaus-
tive list, but is intended to convey the diversity of appli-
cations and point out limitations in previous (sub)versions
of Cricket.

2.2.1 Applications using “space” ID alone

The first class of applications uses only information about
the space (e.g., the room, or part of a room) that the mobile
device is currently in. These applications rely on Cricket’s
ability to demarcate physical and virtual boundaries be-

tween spaces. Each beacon periodically broadcasts its
space name on Cricket’s RF channel. Any listener device
reports the nearest beacon it hears. We found the space
abstraction useful in several applications.

Resource discovery. Our first Cricket application was
location-aware resource discovery, which we prototyped
in conjunction with a separate resource discovery sys-
tem. The goal is to find resources based on attribute-value
queries, and have The discover system perform the match-
ing between queries and resource advertisements. Loca-
tion, obtained using Cricket, is an important attribute, be-
cause users often care about obtaining access to resources
near where they are.

Pervasive Access Control. A student at MIT devel-
oped a pervasive access control system, PAC, using the
coarse-grained location information provided by Cricket.
This system provides light-weight access control based
on location, while preserving the user’s anonymity. For
example, this infrastructure allows a service to be built
so that the ability to remotely control a room’s projec-
tion or lighting system would be honored only for users
who could prove that they are currently close to that re-
source. To implement this secure location subsystem,
he assigned each beacon a location id (LID) and a LID-
CODE, a pseudo-random number based on a seed. The
LIDCODE changes every minute in pseudo-random fash-
ion, and the beacon periodically transmits its LID and
LIDCODE. A device can present the appropriate LID-
CODE to a server only if it is near the concerned space
(or if someone near the space gives it the code).

Person locator. The person locator has two com-
ponents: an application running on a handheld device
equipped with a Cricket listener and a wireless network
card, carried by each person, and a central server that can

3

be queried via a Web or conversational speech interface.
When the application on the handheld device detects that
the user has moved to a new location (i.e., when the iden-
tity of the closest beacon changes), it securely updates the
user’s location on the server. The user can control when,
and if, their handheld reports their location. The user can
also set preferences on the server to determine the level of
detail reported based on their location and the identity of
the person making the query.

Stream migration. Three different stream migration
services have been built with Cricket. The first, migrates
a live video conference to the best available display/sound
resource.

The application uses Cricket to detect transitions into
rooms where video conferencing resources are available,
at which time the video and audio streams are migrated
from the handheld device to a more suitable device in the
room. When the user leaves the room, the video confer-
ence is migrated back to the handheld. The application
developers found that simply using the nearest beacon to
determine room identity was not sufficiently stable. One
noisy sample could make a beacon in the hallway appear
closest when the user was in fact in the room. This would
cause video to start migrating to the handheld, then im-
mediately back to the room. Two other stream migration
systems implemented with Cricket faced the same loca-
tion stability issues: audio stream migration [14] and live
television migration [15].

It turned out that these and other application writers
wanted access to the information provided by the beacons
heard by the listener, in order to implement application-
specific filtering and hysteresis. With this information,
they were able to make application-specific tradeoffs be-
tween stability and responsiveness. As expected, the more
samples used for averaging the more stable the system is,
but it then takes longer to recognize that a new room has
been entered. In Section 3, we discuss how this experi-
ence was reflected in the Cricket API.

2.2.2 Applications requiring position coordinates

A second class of applications uses beacons that broadcast
pre-programmed fine-grained (2D or 3D) position coordi-
nates. Here, a listener hearing sufficiently many beacons1

can solve for its own location.
CricketNav is a mobile indoor navigation application

that runs on wireless handheld computing devices [16].
CricketNav uses Cricket to track the user’s position in
real-time and help users navigate by displaying a se-
quence of arrows leading to the desired destination. Peo-
ple can use CricketNav to locate a particular place, person,
or resource in an unfamiliar or complex environment.

1Three or four, depending on the 2D or 3D nature of the application
and whether the speed of sound in the local environment is accurately
known.

Our original goal was for the navigation application to
use only space information; we reasoned that human users
apprehend space and room information more readily than
position coordinates. So, to help a user navigate, the ap-
plication would display a list of spaces to traverse. How-
ever, we quickly discovered that augmenting spatial infor-
mation with position coordinates improved CricketNav’s
usefulness. For example, it was often useful to know ex-
actly how far away from a door within a room a user was,
or how close to a turn they were. As a result, we added
position estimation capabilities to Cricket listeners, based
on information about known beacon coordinates.

CricketNav uses spatial information as a convenient
handle to fetch the relevant maps from a map server. The
spatial information also helps CricketNav give better di-
rections. When the user moves near wall boundaries, it
is often difficult, using coordinate information alone, for
applications to determine which side of the wall the user
is on. This is because coordinate information is often as-
sociated with a margin of error that can overlap a wall
boundary. Consequently, the navigation system may de-
termine that the user is on the wrong side of a wall and
generate incorrect directions. Because the spatial estimate
does not suffer from the same error modality, the combi-
nation of space and position information usually correctly
disambiguates the user’s postition.

CricketNav made it apparent that Cricket v1’s high
variance in position estimation sometimes made the appli-
cation sluggish or unusable. Furthermore, Cricket some-
times did not provide location with enough accuracy, and
was unable to determine when it was giving inaccurate
information. This experience motivated our successful ef-
forts to improve the accuracy, and reduce the variance, of
Cricket v2 by more than tenfold (see Section 4).

Physical computer games. We also found that users
want to build applications that require a moving device to
accurately track its position while in motion. As part of
a pervasive computing course [17], the instructor and his
students (who were not involved in the Cricket project)
used the Cricket infrastructure to develop a combined
physical/virtual version of the popular computer game,
“ Doom” (Figure 2). This application used Cricket to track
a player’s movement within a room and to reflect that
movement into movement in the game.

In Section 3, we discuss how this experience led to
changes to allow users to modify the Cricket firmware
in more convenient ways than originally supported. In
Section 4, we discuss approaches to improve Cricket v2’s
tracking performance, including the different options used
for the game application.

2.2.3 Pose-aware applications

Cricket devices and listeners can be configured to provide
fine-grained “ pose” information, defined as combined po-

4

Figure 2: Screen shot of a Cricket-enabled Doom game de-
veloped in a pervasive computing course at MIT.

Figure 3: A prototype “software marker” (a software com-
pass integrated with a laser range-finder).

sition and bearing. A variety of prototype “ pose-aware”
applications have been developed within the Computer
Graphics Group at MIT [18]. These applications led us
to develop the Cricket compass. The compass infers a de-
vice’s orientation by using multiple US sensors to obtain
differential distances to one or more beacons [19].

The pose-aware applications described below do not
yet use the integrated Cricket compass, because we have
not yet managed to mass-produce compass units (we have
only made bench prototypes at this time, one of which is
shown in Figure 1). In Section 4.4 we describe the prob-
lems with the original Compass design (which worked,
but was hard to manufacture in bulk) and how our new
design will improve manufacturability.2

2We expect to disseminate compass units as attachable boards to
Cricket v2 late in 2004.

Figure 4: A shoulder-mounted “software marker.”

Currently, these applications use a “ hand-held” (actu-
ally, shoulder-held, and colloquially called the “ Cricket
bazooka”) prototype compass, made from two position
listeners separated by a fixed one-meter baseline (Figure
4). A PDA computes the compass’s midpoint and bear-
ing simply by computing the average and difference, re-
spectively, of the position listener’s reported coordinates.
(When integrated Cricket compass units are available in
bulk, these applications will migrate to that platform.)

Improved navigation. The most immediate use of
pose-awareness is to provide improved navigation ser-
vices, in which the user’s handheld device can show the
user’s position and desired direction of motion in con-
text (much as existing heads-up navigation displays do in
high-end cars).

Software marker. In concert with a geometric envi-
ronment model, a pose-aware device enables the user to
indicate a structural element (portion of wall, fl oor, ceil-
ing, or doorway) of the environment simply by pointing at
it. The application can then provide query or annotation
capability based on the inferred (2D or 3D) location of the
indicated element (where the inference is made by casting
a ray from the device’s location, in the reported direction,
until the ray encounters a modeled surface element).

With the addition of a hand-held laser range-finder (left
portion of Figure 4), the application can infer the (2D
or 3D) location even of unmodeled elements, for exam-
ple moveable furniture or computers. The application
can then associate the object’s current position with meta-
data (e.g., ownership information) in a spatial or relational
database.

Software flashlight, for direct information overlay.
With the addition of a digital projector, a pose-aware ap-

5

Figure 5: Direct information overlay: a pose-aware projec-
tor (left) overlays geometric information (planned electrical
outlets) onto an existing wall (right).

plication can perform “ direct information overlay” by pro-
jecting textual or geometric metadata directly onto envi-
ronmental surfaces (see Figure 5). The information could
be textual (e.g., a maintenance history) or geometric (e.g.,
installation or repair diagrams).

We envision using the direct overlay device as a hand-
held tool, to be carried on a tool belt and used intermit-
tently as needed. Like a fl ashlight, the tool could be ei-
ther hand-held, or rested on a surface such as a table-top
for hands-free operation, for example to illuminate a work
area. A typical usage scenario would be for routine main-
tenance: a user notices a problem (for example, a mal-
functioning power outlet), and indicates its location using
a software marker. The spatially coded maintenance re-
quest enables the maintenance person to navigate to the
trouble spot, using the software compass. Finally, the
maintainer uses the software fl ashlight to illuminate the
problem area, and show the routing of wiring within the
wall, and its path to the nearest breaker box.

2.3 Location-aware Sensornet Applications

We have also found that many embedded sensor net-
work applications and protocols can benefit from location-
awareness. Access to location information is useful in
routing, data dissemination, sensor stream annotation, etc.
We have concluded that it is important for an indoor loca-
tion system to work with both handheld mobile comput-
ing devices and sensor computing nodes. In Section 3,
we discuss how Cricket v2’s design accommodates both
possibilities.

The space-based, position-based, and pose-aware ap-
plications described in this section taught us several
things about Cricket. We break the different lessons
into platform fl exibility issues (e.g., API issues, access to
firmware, physical connector issues, etc.), location accu-
racy and performance issues (e.g., improving steady-state
accuracy, better outlier rejection for reducing variance,
better tracking performance, and a more robust compass),

and deployment issues (e.g., energy consumption and sys-
tem configuration). We discuss these issues in the next
three sections.

3 Platform Flexibility
As discussed in the previous section, we found several
other user needs beyond our original plan:

1. Providing position coordinates.
2. Providing orientation.
3. Enabling application-specific filtering and hysteresis

on location data.
4. Providing reasonable performance for continually

moving users.
5. Providing “ power users” access to the firmware to

change things like the beacon scheduling method.
6. Providing location information to sensor nodes.
To handle the first requirement, we enhanced Cricket

beacons to disseminate their position coordinates in addi-
tion to space (actually, as we explain in Section 5, Cricket
beacons don’t disseminate their coordinates; we found it
much more convenient to have applications query a bea-
con ID database that maintains mappings between beacon
ID and beacon coordinates). 3

The previous section also described how we handled
orientation needs (albeit in a somewhat clumsy way, pend-
ing the development of a more robust compass).

3.1 Software API
“ Raw” access. Our first few users told us that the orig-
inal idea of having the Cricket listener perform all the
filtering of beacon information and provide only the clos-
est beacon to the application was not a good idea. We
modified Cricket v1 to provide a simple and general API:
the listener passes all distance samples from each beacon
to the attached host device. The host device (either some
“ middleware” or the application itself) implements all the
processing to infer the host’s location. We found this to
be a good design decision, because different applications
processed raw distance samples in different ways, even
when they were all interested in space information.

Cricket v2 continues to provide raw access to the infor-
mation collected at the listener to host applications. Ad-
ditionally, Cricket v2 listeners will also perform a signif-
icant amount of embedded processing, including imple-
menting a Kalman filter for tracking moving nodes. This
processing will allow v2 listeners to be used with a variety
of host devices including sensors that don’t perform any
Cricket processing.

Information fidelity. A deployed Cricket infrastruc-
ture, like GPS, does not always provide perfect location
and orientation information. Rather, the fidelity of loca-
tion information may degrade under a variety of circum-

3If implemented carelessly, this could comprimise privacy. In partic-
ular, the database should be downloaded in full, rather than be queried.

6

stances. For example, hearing only RF message without
any accompanying ultrasound would place the device in a
range because there would be no distance estimates, but
it is still useful information to applications. Or, depend-
ing on device movement and ambient ultrasonic noise or
refl ections, the listener may have reduced confidence in
the accuracy of its distance estimates. As another ex-
ample, ultrasound noise reduces the orientation listener’s
ability to discriminate arrival phase at multiple ultrasound
receivers, reducing the accuracy of the listener’s orienta-
tion estimate. If the position listener hears an insufficient
numbers of beacons, it will be unable to trilaterate to de-
termine its own position. In this case, the listener can still
report coarse-grained location estimates by reporting the
identity of the closest single beacon.

These circumstances form a hierarchy of fidelity lev-
els, which an application can use both to adjust its opera-
tion, and to inform the user so that s/he can adjust expec-
tations appropriately. These fidelity levels include fine-
and coarse-grained pose, fine- and coarse-grained posi-
tion (no orientation), stale pose (accurate information, but
the device has moved since its most recent report), and
an out-of-service area where the listener is far from any
beacons.

We are developing ways to bridge short-term service
dropouts by integrating one or more additional sensors to
the hand-held listener. A tilt sensor, gyro, or accelerome-
ter can provide relative attitude or location information for
a few seconds. An outward-looking camera can track the
device’s “ egomotion” or rigid-body motion indefinitely
(up to a single, unknown translational scaling factor), pro-
vided that the environment contains sufficient texture or
geometric information. Finally, if the device can identify
and track known features in the environment (edges, cor-
ners, door-frames), it can solve for its pose independently.

Reporting age. We found it extremely useful for the
listener to report age information for every beacon, be-
cause beacon broadcast collisions, beacon scheduling,
and packet losses introduce significant latency between
chirps. Applications can use this information in differ-
ent ways, e.g., to interpolate or extrapolate the device’s
current location based on how users are likely to move
while running any given application. For example, while
playing a game in front of a large display, it is unlikely,
although not impossible, for the user to go into a different
room altogether. In the person locator application, age in-
formation was used as input to the hysteresis to determine
when someone had left a room.

3.2 Software platform flexibility

In Cricket v1, we had erroneously assumed that users
would not be interested in changing the firmware running
in the beacon and the listener. We found, however, that
some users wanted to make changes to beacon schedul-

ing, listener filtering, etc. The use of a commercial com-
piler, and software that was tightly coupled to the under-
lying hardware, made such changes both expensive and
time consuming. To overcome this shortcoming, we have
rearchitected Cricket v2’s embedded software and imple-
mented it in the TinyOS environment [23]. In addition to
easier development, the move to TinyOS is likely to make
it easier to develop location-aware sensor network appli-
cations using Cricket.

This change required signigicant effort: Cricket preci-
sion depends on the accuracy of mesurement of the time
interval between the RF and the ultrasound arrival times.
The TinyOS event driven architecture is not well-suited
for such precise timing of events. Achieving the tim-
ing granularity of Cricket v1 with TinyOS required im-
plementating Cricket’s wireless messaging deep in the
TinyOS radio code. It also required the addition of a cap-
ture pin on the embedded microprocessor for microsecond
timing.

3.3 Hardware interface
Cricket v1 listeners interface to a host using a RS232-
serial interface. This turned out to be inconvenient for
mobile users because it required an unwieldy and obtru-
sive cable, and was a barrier to wider adoption. Cricket v2
provides a more convenient compact fl ash interface. The
compact fl ash provides a solid attachment to the host. It
also provide power to the v2 listener, eliminating the need
for a battery pack. To enable easy integration with sen-
sor platforms, Cricket v2 also provides a connector to the
Berkeley mote / Crossbow Mica platform.

This design (see Figure 1) also opens up the possibil-
ity of mobile sensors, where a handheld computer with
a Cricket listener in its CF slot, to which a commercial
sensor board is attached, can be carried by users and also
act as sensors in addition to being used for human-centric
mobile applications.

4 Location Accuracy
In Section 2.2, we described a few shortcomings of
Cricket v1 in terms of its accuracy and precision. Cricket
v2 fixes several shortcomings of v1 based on our experi-
ence with several applications. First, because Cricket v1
was primarily optimized for good spatial boundary detec-
tion, its position accuracy in real deployments had high
variance, being accurate to only about 30-40 cm. Cricket
v2 improves this significantly, being able to obtain dis-
tance estimates to within 1 cm on average and 3 cm most
of the time (see Figure 6).

4.1 Improving distance estimation accuracy
The Cricket v1 listener used a “ phase lock loop” (PLL) ul-
trasonic detector (Figure 7(b)). This detector had highly
variable detection characteristics, leading to distance mea-

7

-10 0 10 20

Error from true distance (cm)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
fr

ac
ti

on
 o

f
m

ea
su

re
m

en
ts

v1 facing
v2 facing
v1 30 degree angle
v2 30 degree angle

Figure 6: CDFs of measured distances in Cricket v1 and
Cricket v2, showing v2’s much-improved accuracy.

US Sensor

Amp

Phase Lock

Loop

US Detect

3V

(b)

US Tx

(a)

Figure 7: Cricket v1 US circuitry: (a) beacon and (b) listener.

surement errors as high as 30 cm. In Cricket v2 we re-
placed the PLL-based detector with a simpler amplitude
detector (Figure 8(b)). This improved the detection ac-
curacy substantially, to about 1 cm, but also reduced the
sensitivity of the detector circuit. To compensate for this,
we increased the ultrasonic transmitter signal strength by
increasing the drive voltage from 3V to 12V (see Fig-
ures 7(a) and 8(a)).

The CC1000 radio chip used on the Cricket v2 also pre-
sented difficulties because the binary data does not arrive
deterministically (the data does not arrive eight bits at a
time). The offset of bits arriving late for a given start sym-
bol (representing the start of ultrasound) can change the
precision of Cricket by 7 cm. We compensated for this by
recording the bit offset of the first byte of the start symbol
within the byte captured by the radio and then adjusting
the timing in the listener firmware.

4.2 Rejecting outliers

We found that precise distance measurements require sen-
sitive US sensors, but such sensors react to ambient ul-
trasonic noise and high-energy sound pulses. In particu-
lar, we found that malfunctioning fl uorescent lights, peo-
ple jangling keys, and loud noises (e.g., slamming doors)
cause the listener to record bad distance samples. Accu-
rate distance estimation therefore requires good outlier re-
jection methods.

Initially, we used Cricket to determine the location of
mostly static objects for resource discovery applications
(we assumed a person to be static for several seconds be-
fore computing the current location). The MinMode al-

3V

US Tx

(a)

Voltage

Multiplier

+6V

-6V

US Sensor

Amp

US Detect

(b)

Variable Gain

Figure 8: Cricket v2 US circuitry: (a) beacon and (b) listener.

gorithm implemented in Cricket v1 has good outlier re-
jection properties when the listener is static. It first col-
lects distance samples for a fixed time window of 5 sec-
onds, then it rounds of the samples to the nearest 20 cm.
Next, it selects the value that has the maximum number
of occurences as the true distance; if there are several val-
ues with the maximum occurence, it selects the minimum
value as the true distance. Although this algorithm per-
forms well when the listener is static, its performance de-
grades when the listener is mobile because the dynamic
distance values prevent the algorithm from obtaining the
correct value with a high enough frequency.

In Cricket v2, the extended Kalman filter (explained
in the next section) used for obtaining position informa-
tion while a device is moving maintains an estimate of the
variance of the filter’s position state. We use this to re-
ject outliers; the variance of the position estimate defines
a threshold, and if a sample falls outside of that threshold,
the listener rejects it. This approach usually rejects all re-
fl ections and noise, unless the state estimate is itself bad.
In that case, as explained below, the Kalman filter’s state
resets, and the “ outlying” sample is not rejected.

4.3 Fast tracking of moving objects
The applications described in Section 2.2.2 require fast
updates of a moving object’s position coordinates. Be-
cause Cricket is an active beacon architecture, meeting
this requirement is more involved than if it were an active
mobile system like the Active Bat. The reason for this is
that the simultaneity condition— the availability of mul-
tiple distance estimates to known position beacon/sensor
positions in the infrastructure for the same current posi-
tion of the moving device—is not satisfied in general.

4.3.1 The “ Doom” approach

The initial attempts by the developers of the Cricket-
enabled Doom to use multiple Cricket v1 beacons on the
ceiling and the full 3D location tracking code did not give
a fast enough update rate for game play. New values from
at least three beacons were required to calculate each lo-
cation. The 3D solver did not always give valid results,
causing position calculations to be dropped, further re-
ducing the update rate. Also, setting up the game required
configuring the position of each of the beacons.

They addressed both issues by simplifying the prob-
lem, taking advantage of the way user’s would move while
playing the game. First, they used only two beacons, one

8

on each side of the projection screen showing the vir-
tual world, at waist height (blackboard chalk rails where
convenient holders). The beacon’s code was modified to
transmit more frequently, as they where only competing
with each other for transmission time. The moving de-
vice’s location was calculated only in a 2D horizontal
plane using the intersection of the two circles centered at
each beacon. There is only one valid solution, the sec-
ond intersection point is always behind the display. Here,
responsiveness is more important than absolute accuracy.

The developers of this application also came up with a
simple and elegant application-specific beacon configura-
tion method to avoid manual configuration. At initializa-
tion, a listener is held very close to one of the two bea-
cons, and measures the distance to the other beacon. The
result gives the distance between the two beacons, which
is the only parameter needed to configure the system. (In
Section 5.2 we show how a more general method solves a
more general configuration problem.)

Another way to use Cricket for this application would
be to make the moving device an active transmitter. The
game developers attempted this method, but given the
time constraints of a term project and the added complex-
ity of merging two streams of location updates, they were
not able to get the information gathered at two different
listeners coordinated at a single location.

This experience, as well as our own experience with
CricketNav, suggested a number of improvement possi-
bilities. The rest of this section discusses some of them.

4.3.2 Using an extended Kalman filter

A Cricket v1 listener computes its position by storing
the last T seconds of distinct beacon samples and run-
ning a least-squares minimization (LSQ) to minimize the
residual error. Specifically, if the known beacon posi-
tion of beacon i is bi and a distance estimate from it
is di, the listener estimates its position p by minimizing∑

N

i=1
(‖bi − p‖ − di)

2, where ‖bi − p‖ is the Euclidean
distance between the coordinates bi and p.4

Of course, if the device is in motion, a large value of T

leads to inaccuracies because LSQ will use old distances
that may not be close to the current position. Moreover,
in general, LSQ alone does not adequately capture motion
state. GPS faces a similar problem, and handles it using a
Kalman filter [5]. Cricket v2 also implements a Kalman
filter to help a moving device track its position.

Like GPS, Cricket v2’s Kalman filter maintains a state
vector that estimates the device’s current position and ve-
locity (currently, we don’t use higher order terms like ac-
celeration). Unlike GPS, Cricket v2’s filter has to oper-

4LSQ posed in this manner is computationally very intensive, so the
listener linearlizes these equations and approximates the solution. That
approximation does not always minimize the true least-squared error, but
is usually good enough.

ate “ single-constraint-at-a-time” , because the simultane-
ity condition does not hold. The idea in the Kalman filter
is simple: maintain the device’s position and velocity esti-
mates, and assume that between beacon chirps, the device
moves at constant velocity. Each beacon chirp defines a
time-step. The filter uses a predictor to produce an esti-
mate of the device’s position at any time between chirps,
and a corrector to rectify the position and velocity state
whenever a beacon chirp is heard and the reported dis-
tance deviates from what the predictor suggests.

A covariance matrix refl ects the filter’s confidence in
the state vector. With each incoming measurement we up-
date our state vector based on the new data, weighing the
state against the new information by comparing the cur-
rent covariance against the variance of the new measure-
ment.

Once in a while, the Kalman filter’s state becomes bad
(the covariance matrix has large values), suggesting that
its predictions are wrong. After substantial experimenta-
tion, we found that a good way to reset the bad state of
the Kalman filter is to obtain a new fix (a more accurate
position estimate) on the device’s position using LSQ on
the past small number of beacon samples, ignoring the
Kalman filter.

We found that one way to obtain a good fix is to move
from a purely active beacon system to a hybrid system
where a moving listener would become an active trans-
mitter whenever the Kalman filter’s state went bad. To
do this, while maintaining Cricket’s scaling and privacy
goals, requires a new protocol. Cricket v2 uses the fol-
lowing method:

1. In the common case, the listener does not transmit
any information, only beacons do.

2. If the listener’s Kalman filter state is bad (covari-
ances above a configurable threshold), then it be-
comes an active transmitter. This usually happens if
the device experiences sudden linear acceleration or
turn. It generates concurrent RF and US pulse, with
the RF message having no information in it other
than a randomly generated nonce. This message is
sent in a specific timeslot when all the beacons listen
on the channel.

3. If a beacon hears an RF message and the correspond-
ing US pulse in the “ beacon listening” timeslot, it
waits for a short period of time and broadcasts the
nonce (set by the listener) together with the distance
estimate. The listener hears this information from
all the beacons, obtaining good information about its
current position because the simultaneity condition
now holds.

It is important to note that the transition to an active
transmission from the moving listener happens only when
the Kalman filter’s state is bad, which means that the sys-
tem as a whole is likely to remain scalable because it is un-

9

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error (cm)

O
cc

ur
an

ce
s

Hybrid−MultiModal
ActiveBeacon−MultiModal
ActiveBeacon−LSQ

Figure 9: CDF of tracking accuracy at a speed of about
0.7 m/s for three Cricket schemes; the best scheme is a
multi-modal Kalman filter (not described in this paper) that
uses the hybrid approach of occasionally going into active-
transmit mode. The median error is comparable to an al-
ways actively transmitting mobile scheme.

likely for every listener in a room to simultaneously have
a bad filter state. The use of a random nonce does not di-
rectly reveal the mobile’s identity, and the beacons broad-
casting the distance estimates back to the listener solves
the problem of correlating these samples.

4.3.3 Conducting experiments

We found it difficult to design a testbed facilitating re-
peatable experiments. The characteristics of RF and ultra-
sound depend on ambient conditions, walls, people in the
vicinity of the transmissions, etc. All our distance estima-
tion experiments were conducted in a variety of different
rooms, lab space, and corridors.

Motion tracking proved particularly problematic, be-
cause we wanted to compare the performance of different
methods under identical conditions. To do this, we bought
a computer-controlled Lego train set and tens of meters of
train tracks, and set it up in a large room. We attached
a Cricket listener to the train and beacons to the ceiling.
We wrote utilities to precisely control the movement pat-
tern and speed of the train, including pause times and ran-
dom velocities between pauses. We experimented with
this apparatus at speeds of up to about 1 m/s. This exper-
imental setup included a number of real-world effects, in-
cluding multiple beacons (up to six) interacting with one
another, varying distances from the different beacons to
the listener, and ultrasonic noise and refl ections (in fact,
we found that the engine of the train generated some ul-
trasonic noise that the listener had to filter out!).

Figure 9 shows a sample CDF of the tracking accuracy
at an average movement speed of 0.7 m/s. The median
inaccuracy for the best scheme (the hybrid scheme) is un-
der 20cm, and the lag is one-sided, which means that an
application may be able to account for it. Overall, we are

R

1

R

2
 R

3

d

1

d

2

Figure 10: Ultrasonic sensor array used by the Cricket com-
pass.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

-40 -30 -20 -10 0 10 20 30 40

A
n
g
le

 e
rr

o
r

True angle

Figure 11: Cricket compass error vs. true angle.

happy with the performance of this system, which shows
that over a 5-10 meter beacon range, we can track reason-
ably fast human speeds with acceptably low error. A more
complete description of these experiments and Cricket’s
tracking methods is in [20].

4.4 Improving compass accuracy

We designed the Cricket compass to obtain direction in-
formation within the Cricket system. The Cricket com-
pass consists of two arrays of US sensors, each array hav-
ing three collinear sensors as shown in Figure 10. When
a US signal is received, we measure the pair of phase dif-
ferences (θ1, θ2) between the sensor pairs (R1, R2) and
(R2, R3). By selecting proper values for the seperations
d1 and d2, we can get unique values for (θ1, θ2) when the
array is rotated by 180◦. These results heavily depend on
the accurate placement of the sensors in the aray; if the
seperations between sensors change by even 1 mm, the
reported angle may have an error of tens of degrees. Al-
though we managed to place the sensors accurately for
our prototype, it was not possible for us to place the sen-
sors so accurately when building several hundred units.
One solution to this is to build the sensor array during
the manufacturing process of the sensor itself, but sensor
manufacturers were reluctant to build such custom sensor
units for quantities less than tens of thousands of units.

With the increased accuracy of Cricket v2, we changed
the architecture of the compass slightly to make it
amenable for mass production. We still use the phase
difference θ1 between the receiver pair (R1, R2). When
the receivers are placed λ (the wavelength of ultrasound)

10

apart, we obtain the same phase difference for two angles
that are seperated by 90◦. Since the improved hardware
design enables us to measure the distance difference from
the beacon to the two receivers R1 and R2 with an accu-
racy of ' 1cm, we can use this measured distance dif-
ference to differentiate between the two angles that cor-
respond to a given phase difference θ1. In this scheme,
since, all three sensors need not be accurately colliner.
Any placement errors when placing R1 and R2 can be cor-
rected using a simple calibration step. Figure 11 show the
performance of the new compass architecture (we show
only −45◦ to +45◦ since we use two perpendicular sen-
sor arrays for angle measurement).

5 Deployment and Management
One can easily put together a Cricket location system by
attaching a small number of beacons on the ceiling and by
connecting a listener to a host running Cricket application
software. The ability to rapidly deploy a working loca-
tion infrastructure has been a significant user-perceived
advantage of Cricket. Demonstrations of the system have
been relatively easy to perform both on-site and off-site,
students have found it easy to make fast progress in class
projects, and users have told us that they have found it
painless to get going with the system.

There are two main issues in deploying large numbers
of Cricket beacons in a production system: power man-
agement and configuration management.

5.1 Power Management
Cricket s receive their power from batteries. This is con-
venient for initial deployment and system demonstrations.
However, in Cricket v1, at current power consumption
rates, the batteries need to be replaced every three weeks.
This is especially inconvenient and potentially costly in
manpower for production use in even moderate-sized de-
ployments.

As the size of a Cricket deployment grows, it is im-
portant to manage energy consumption better than what
Cricket v1 originally did. To this end we considered sev-
eral approaches: hardware improvements, scheduling op-
timizations, alternate power sources, as well as the design
of a monitoring infrastructure to detect “ missing” beacons
whose batteries have failed.

5.1.1 Hardware Improvements

Cricket v1 hardware design was not optimized for low
power consumption. Since the frequent battery changes
became a big hurdle against a permanent deployment of
a Cricket network, we designed Cricket v2 to be more
power-efficient. Assuming a beacon frequency of 1Hz per
beacon, Table 1 shows the current consumption and the
operating time of various beacon subsystems for Cricket
v1 and v2.

Although Cricket v1 works well at moderate beacon
densities, high deployment densities (twelve or more bea-
cons all within range of each other) causes problems.
This problem, became apparent in situations where users
deployed a large number of redundant beacons to pro-
tect against batteries running out. The poor noise im-
munity of the Cricket v1 radio (amplitude modulation
and surface-acoustic-wave based receivers) caused errors
in received radio messages, which caused them to be
dropped. Cricket v2 overcomes the noise problems using
a better radio based on frequency modulation and a super-
heterodyne receiver (CC1000 from Chipcon), and appears
to perform well at high densities.

Cricket v1 used separate RF transmit and receive cir-
cuits. We found that when batteries on beacons ran down
and the voltage dropped, the receiver unit failed before the
transmit unit, causing the carrier sense mechanism to fail
and leading to poor performance. We have corrected this
problem in v2.

5.1.2 Scheduling Optimizations

We also improved the scheduling of the beacons. In
Cricket v1 the chirp schedule was defined by the sleep
time of the beacon between attempts to broadcast location
information and some random delay.

To prevent collisions between beacons the radio signal
lasted from the beginning to the end of the US pulse. A
beacon would send its chirp when the radio was free, us-
ing carrier sense as a trigger.

In Cricket v2 the radio signal does not envelop the US
signal anymore. Instead we have a start of chirp message
(SYN1) and an optional stop of message (SYN2). The
US pulse is also shorter (150 µs instead of 500 µs) but
its lifetime is longer (50 ms instead of 40 ms). This lets
us save on energy and provides the possibility for inter-
beacon RF communication even when the ultrasound is in
fl ight.

In Cricket v2, the beacons now have a mean chirp fre-
quency and listen for SYN1 messages before sending, in-
stead of using carrier sense. If a SYN1 message is re-
ceived during the wait period before the chirp, the timer
is reset and the beacons wait for the ultrasound life to ex-
pire. An extra random delay is added to prevent collisions
between chirps when two or more beacons compete for
the same chirp time. The wait time is subtracted from the
next sleep time to preserve fairness and the average chirp
frequency. The state diagram of the chirping process is
shown in Figure 12.

To detect interference caused by hidden terminals, the
listener discards location measurements if two or more
SYN1 messages arrive (from different beacons) inside the
lifetime a the ultrasound pulse.

Another approach to scheduling could be to use ul-
trasound modulation. This would let us send ultrasound

11

Sub system Processor RF Tranmitter RF Receiver US Transmitter

Cricket v1 (active) 3.7mA×50ms 1.5mA×50ms 6mA×1ms 2mA×250µs
Cricket v1 (idle) 1.5mA×1000ms 1.7µA×1000ms 0.7mA×1000ms 1.5mA×1000ms

(idle)
Cricket v2 (active) 7mA×45ms 7mA×5.3ms 7.4mA×32ms 50mA×120µs
Cricket v2 (idle) 10µA×1000ms 0.1µA×1000 - 0.5µA×1000ms

Table 1: Power consumption of Cricket v1 and v2 beacon subsystems.

Receive
(30ms + ∆ 1−3ms)

Idle state
(800−1200ms)

Send

If failed

*

* The receive state is reset each time a beacon is heard

Figure 12: State diagram of the beaconing process.

Figure 13: Cricket v1 with Solar panel.

waves one after another without waiting for the ultrasound
to die out. Unfortunately, with a transmission time of 3
ms / bit and a minimum of 8 bits per ultrasound pulse, the
length of the ultrasound is almost as long as the lifetime
of the pulse we use, but our experience shows that the bit
error rate was very high. In addition, ultrasound modu-
lation also increases the power and CPU consumption on
the listener.

5.1.3 Solar Power

To minimize the chore of replacing beacon batteries, we
considered alternative power sources. Of course, Cricket
beacons can be plugged into wall power. We provided an
adaptor for this. Beyond this we were interested in re-
newable power sources, such as solar. Cricket beacons
are most often deployed to provide location information
indoors, where GPS doesn’t work. In this environment,
especially office buildings, there is usually a large fl uo-
rescent lighting system. We decided to see if we could
take advantage of this infrastructure to provide power to
the beacons and maintain their easy deployability.

We started with 60mm square solar cells, model OK-
60 from OKSolar.com, purchased for about $3.50 each in

small quantities. These cells are rated at 3V, 40mA. This
level of performance, however, is most likely achieved
outdoors on a sunny day. Indoors we typically see 1.4V at
0.2mA and up to 3.2V at 1.7mA near a light fixture, open
circuit. A Cricket v1 beacon needs 2.4V at 5mA.

On closer examination of our solar cells we found sig-
nificant variations among cells: they varied from 0.3V at
0.45mA to 0.6V at 0.6mA under the same lighting condi-
tions. Connecting cells of mixed characteristics in series
drives the current down to that of the minimum current
of the selected cells. Connecting mixed cells in parallel
drives the voltage down to the minimum voltage produced
by that collection of cells.

Beyond this, the voltage and current produced were ir-
regular. This led us to consider adding a voltage regulator.
This did not succeed due to the high current consumed by
the voltage regulator.

This led us to use four solar cells in parallel. This panel
provides 2.5V at 7mA and works. We looked at some pos-
sibilities for reducing the panel to three cells to make this
power supply less bulky. Three cells did not work. Further
analysis showed that the beacon draws about 20mA for a
fraction of a second during startup. Adding a 4700µF ca-
pacitor rated at 16V allowed a panel of three cells to work.
Further tests indicated that a 2200µF capacitor rated at 4V
would be sufficient. The resulting system is shown in Fig-
ure 13.

We have deployed about 30 of these cells and they gen-
erally work fairly well. From time to time people turn off
the fl uorescent lights and, due to the interconnection of
the solar panel with the existing beacon layout, the bea-
cons need to be switched on and off to get them going
again. We may also go back to a four cell configuration
for working in environments with dim lighting. We be-
lieve that solar-powered Cricket devices are viable and
more convenient that having to periodically replace AA
batteries.

With the improved power consumption of Cricket v2
beacons, we can use smaller and fl exible solar cells to
power them [22].

5.1.4 Monitoring Infrastructure

For the medium-sized deployment made at MIT to sup-
port the people locator application, we wrote a monitoring
utility to detect beacons with dead batteries. An addition

12

to the locator software running on each handheld recorded
the set of beacons heard in a time window (e.g., 5 minutes)
then reported the beacon names to a server. The server
recorded the time at which each beacon was last reported.
Beacons not heard from for a long period of time where
either dead, or no listener had been near that beacon. The
latter could be checked by taking a listener to close to the
beacon. We used the same infrustructure to measure bat-
tery life times for beacons by leaving a listener sitting near
the beacon until the beacon’s battery died.

5.2 Configuration Management
Originally, we had envisioned that each beacon would
send its space and coordinate information on the RF chan-
nel. Over time, we found that it was simpler in many cases
for a beacon to only send a unique ID, and for the map-
ping between the ID and the space/coordinate information
to be maintained in a central database. In this approach,
the listener or host device downloads the database for each
building of interest.

5.3 Assisted Coordinate Configuration
Configuring spatial information in the beaon had been
easy, but configuring accurate beacon coordinates has
been a major bottleneck in deploying Crickets. It is
painful to use measuring tape to obtain beacon coordi-
nates manually. Over time, we have developed a Bea-
conConfig application to automate the beacon configura-
tion process and allow rapid and ad hoc deployment of the
Cricket system in any desired location.

BeaconConfig works by using the Cricket listener to
collect distance measurements from all the beacons that
needs to be configured. The user picks three beacons as
references and places the listener underneath each of them
to collect distance samples. The references are used to
define the origin and the orientation of the coordinate sys-
tem. After collecting the measurements, the coordinates
of each of the reference beacons are immediately known.
The listener can then use the three reference coordinates
and the collected distance measurements to compute the
coordinates for the rest of the beacons.

The BeaconConfig application assumes that all the bea-
cons that need to be configured are within the listener’s re-
ceiving range. Thus, it is suitable for open-area or single-
room deployment.

5.4 Beacon auto-localization
For a large Cricket deployment, it is inconvenient to con-
figure beacon coordinates by manually visiting each of
them. Ideally, what we need is an “ anchor-free auto local-
ization” algorithm, where beacons measure inter-beacon
distances to their neighbors and run a distributed algo-
rithm to compute a coordinate assignment that satisfies
the measured distances.

Listener

Figure 14: Mobile-assisted autolocalization: Patching to-
gether disconnected beacon regions using a listener.

A number of recent groups have developed auto-
localization protocols for sensor networks. Some of these
use a non-trivial number of anchor nodes that are pre-
programmed with their positions, and those schemes are
not well-suited for Cricket. Anchor-free schemes that are
able to handle arbitrary node arrivals match Cricket’s re-
quirements better.

We have developed a two-phase fully distributed
anchor-free algorithm whose runtime is linear in the num-
ber of beacons, for solving this general auto-localization
problem. In the first-phase of the algorithm, beacons use
the inter-beacon radio connectivity information to come
up with an estimated coordinate assignment. This coor-
dinate assignment results in a scaled up approximation of
the original graph that maintains the correct ordering of
noides in a polar coordinate system. In the second phase,
each beacon performs a localized optimization that itera-
tively reduces the sum-squared-error of the graph [21].

Although this scheme performs well in a general situa-
tion where each node knows the distance to its neighbors,
most proposed auto-localization schemes (including ours)
do not actually solve the configuration problem observed
in a real-world Cricket deployment. The reason for this is
that mutual distance estimates between beacons are only
known when the beacons are in the same open area, for
ultrasound does not travel through walls. We have con-
cluded that what is needed is a new mobile-assisted local-
ization scheme, where a roving mobile listener “ patches
together” isolated regions of beacon network (see Fig-
ure 14). We are working on such a scheme for Cricket.

6 Related Work
The past few years have seen rapidly growing interest
in location-aware applications [4] and in systems such
as Active Badge [24], Active Bat [6], Cricket [8], and
RADAR [1] that provide location information in indoor
environments. Active Badge uses infrared, which has
dead spots in some locations, Active Bat and Cricket both
use RF and ultrasound like Cricket does, and RADAR
uses 802.11 RF. RADAR is not as accurate as the sys-
tems that use RF and ultrasound, but does not require any
infrastructure other than 802.11 access points.

We do not survey all the location systems here, but only

13

mention those systems that share some similarities with
Cricket. The Bristol indoor positioning system has a de-
sign similar to Cricket in that it uses active beacons and
passive receivers [9]. The system uses PIC processors,
which limits the amount of computation possible on each
node in the system. This limit forces the beacons to be
placed in a regular pattern on the ceiling, which in turn
causes the installation of the beacons to be more difficult.

The Place Lab project uses existing WiFi Access Points
(like RADAR) to determine location information for Web
applications. Place Lab hopes to provide a community-
driven database of WiFi locations for mobile users. Ap-
plications can then compare the signal strength of avail-
able access points to the Place Lab database to determine
a coarse-grained location [10].

Aetherwire & Location and Ubisense are commercial
ventures that focus on ultrawideband (UWB) technology
to track objects and people. Ubisense reports an accu-
racy of tens of centimeters in an “ active mobile” archi-
tecture [2], in which the infrastructure can track users.
UWB does not require line-of-sight connectivity, but cur-
rent systems are not as accurate as Cricket. We also be-
lieve that a number of our techniques to handle erroneous
distances extend to other systems that do not employ our
ranging technology.

Researchers have investigated Bayesian and Kalman
filter methods for tracking users [7, 3]. There is an exten-
sive and growing body of work on improving the perfor-
mance of GPS using various filtering and statistical tech-
niques, some of which might also apply to indoor location
systems [12].

7 Conclusion
In the process of our own development and experimen-
tation with Cricket v1, and in cataloguing the reactions
of numerous users of the device, we learned a number
of useful lessons. First, we learned that the API to the
device had to be rich enough to support a wide (and un-
expected) variety of usages, and that users did not want
all of the underlying mechanism (scheduling, etc.) hid-
den from them. Second, we learned that applications re-
quire either highly accurate location information, or use-
ful fidelity information under degraded conditions, in or-
der to adjust their operation appropriately. We used these
lessons to make significant improvements to the distance
estimation accuracy, outlier rejection, position accuracy,
movement tracking performance, and orientation estima-
tion of Cricket v2. Finally, we learned that deployment
and management issues such as configuration and power
consumption become significant operational issues even
at medium scales, i.e., with the use of just a few tens of
devices. We also described how, with our increased un-
derstanding of user needs, we modified the capabilities of
the beacons, listeners, and the overall system.

We used this knowledge in the design of Cricket v2.
Two different prototype units of v2 are now available, and
mass-produced units are scheduled to be commercially
available in the first quarter of 2004. A noteworthy fea-
ture of the new listeners is that they can be attached to
a device’s CF slot, and can also act as sensor computing
nodes with sensors attached to them. Finally, we are also
designing a new compass device based on the method de-
scribed in this paper, and hope to have those units for dis-
semination sometime in 2004.

References
[1] P. Bahl and V. Padmanabhan. RADAR: An In-Building

RF-based User Location and Tracking System. In Proc.
IEEE INFOCOM, Tel-Aviv, Israel, March 2000.

[2] J. Cadman. Deploying Commercial Location-Aware Sys-
tems. In Proc. Fifth International Conference on Ubiqui-
tous Computing, October 2003.

[3] D. Fox, J. Hightower, H. Kauz, L. Liao, and D. Pat-
terson. Bayesian Techniques for Location Estima-
tion. In Proc. Workshop on Location-aware Comput-
ing, part of UBICOMP Conf., Seattle, WA, October
2003. Available from http:www.ubicomp.org/
ubicomp2003/workshops/locationaware/.

[4] IT Roadmap to a Geospatial Future. http://www.nap.
edu/html/geospatial_future/, 2003.

[5] I. Getting. The Global Positioning System. IEEE Spec-
trum, 30(12):36–47, December 1993.

[6] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster.
The Anatomy of a Context-Aware Application. In Proc.
5th ACM MOBICOM Conf., Seattle, WA, August 1999.

[7] J. Krumm. Probabilistic Inferencing for Location. In
Proc. Workshop on Location-aware Computing, part of
UBICOMP Conf., Seattle, WA, October 2003. Available
from http:www.ubicomp.org/ubicomp2003/
workshops/locationaware/.

[8] N. Priyantha, A. Chakraborty, and H. Balakrishnan. The
Cricket Location-Support System. In Proc. 6th ACM MO-
BICOM Conf., Boston, MA, August 2000.

[9] C. Randell and H. Muller. Exploring the Dynamic Mea-
surement of Position. In Proc. Sixth International Sym-
posium on Wearable Computers, pages 117–124, Seattle,
WA, October 2002.

[10] B. Schilit, A. LaMarca, D. McDonald, J. Tabert, E. Cadag,
G. Borriello, and W. Griswold. Bootstrapping the
Location-enhanced World Wide Web. In Proc. Fifth In-
ternational Conference on Ubiquitous Computing, Octo-
ber 2003.

[11] M. Spreitzer and M. Theimer. Providing Location Infor-
mation in a Ubiquitous Computing Environment. In Proc.
14th ACM SIGOPS Conf., pages 270–283, Asheville, NC,
December 1993.

[12] G. Strang and K. Borre. Linear Algebra, Geodesy, and
GPS. Wellesley Cambridge Press, 1997.

[13] Suppressed. Removed for anonymity.
[14] Suppressed. Removed for anonymity.
[15] Suppressed. Removed for anonymity.

14

[16] Suppressed. Removed for anonymity.
[17] Suppressed. Removed for anonymity.
[18] Suppressed. Removed for anonymity.
[19] Suppressed. Removed for anonymity.
[20] Suppressed. Removed for anonymity.
[21] Suppressed. Removed for anonymity.
[22] Iowa Thin Film home page. http://www.

iowathinfilm.com/.
[23] http://webs.cs.berkeley.edu/tos/.
[24] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active

Badge Location System. ACM Transactions on Informa-
tion Systems, 10(1):91–102, January 1992.

15

